
TM687
2628.000

Tm '15 rnOT ‘BVBBLE c ---

W . M. Smart
October, 1976

AEGTRaCT

The online computer system in use at the 15' bubble Chamber

is described, with emphasis on the program. The system is used

to log and display data about the bubble chamber and its support

systems, and has been very useful in improving both the

efficiency of the chamber operation and the physics value of the

bubble chamber pictures. This note is sufficiently detailed to

serve as a useful guide to the online program. Experiences and

techniques of possible value for other small computer projects

are given. Paragraphs of more general interest have been flagged

for the reader who is uninterested in program details.

TM687
2628.QOQ

TABLE OF CONTENTS

I.

II.

III.

IV.

V.

VI.

VII.

VIII.

IX.

X.

XI.

XII.

XIII.

Introduction

Purpose of the Online Computer System

Hardware

Program Introduction

Reading and Processing of General Data

Reading and Processing of Pulse Data

Data Storage

Data Display

Disk Block Editing

Program Details

Unnsua,L Problems

Future Possibilities

Conclusion

TM687
2628.000

TBE 15 FOOT BUBBLE CiUWBER ONLINE COMPUTER SYSTEM ---

I. INTRODUCTION

* This note describes the on.li.ne computer system in use for

data logging at the Fennilab 15' bubble chamber. It is intended

to serve two audiences: those wishing to obtain a general idea

of what the system does; and to give detailed descriptions of the

program so that an experienced PDP-11 assembly language programmer,

by using this note and the actual program listings, could have

enough information to either modify this program or borrow some

of the program's features for another project. To spare the

former group unnecessary detail, I have marked the paragraphs

which are relevent to a general overview of the computer system

with a * in the left margin. Sections I through IV* XII and XIII

are the most important for this overview.

* Most of the note is concerned with what the online program

does and how it does it. Only a brief description of the computer

hardware, devices interfaced to the computer, systems programs

supplied by Digital Equipment Corporation and Fermilab computer

group programs will be given, but most of these are covered by

the references appearing at the end of the paper. Operating

instructions and commands to the outline program also are not

given here, they are kept in a notebook in the bubble chamber

control room.

II - 1 TM687
2628.000

II. PURPOSE OF THE ONLINE COMPUTER SYSTEM

* The primary purpose of the computer system is to gather data

about the 15' bubble chamber, store it for later use, and display

selected data to the bubble chamber operators. Most of this data

is of interest only to the bubble chamber operators, but some data

is expected to be of interest to the physicists running an

experiment in the 15' bubble chamber. Such data includes: the

date, time, roll number, frame number, bubble chamber magnet current,

chamber temperature, chamber pressure and pressure drop, and number

of hadron beam particles entering the chamber; all of which are

recorded on magnetic tape each time the chamber is pulsed.
* Data of interest to the operators includes more detailed

information about the bubble chamber itself: temperatures and

pressures at several points inside the chamber, at the piston rings

and under the piston, cooling loop parameters, etc.; and information

about the bubble chamber support systems, such as the superconduc-

ting magnet and helium liquifier, hydrogen refrigerator, expan-

sion system, and gas and liquid storage tanks. Data of interest

in these support systems includes temperatures, pressures, flow

ratesl liquid levels, valve settings, etc. Having this information

available enables the operators to run the chamber more efficiently

and economically.

* Using a computer to log this data has several distinct advan-

tages compared to logging it manually. Sets of readings can be

taken more frequently and on a regular time basis. Such reading

continues automatically, even when all the operating crew is

involved with some chamber problem. Data recorded during such

II - 2 TM687
2628.000

problem times are frequently very important in understanding the

malfunction and would probably not be taken without the computer

because the crew is busy working on the problem. Computer read-

ings are usually more accurate and the computer can quickly convert

readings to the appropriate physical units. The computer can

average several related readings taken at (essentially) the same

time, for example, the several vapor pressure thermometers inside

the chamber volume can be averaged to give the average chamber

temperature. Averages can also be made of all the readings of a

particular piece of data taken in specified time periods. Another

job that the computer can do well is to calculate the rate of

change of a particular reading with time. This information can

be extremely useful, one example is the cooling rate of the

bubble chamber windows and chamber body during chamber cooldown

from room to liquid hydrogen temperatures. Too high a cooldown

rate could damage the glass bubble chamber windows. Another example,

see Figure 1, is the level in the liquid helium storage dewar.

During magnet operation, liquid helium is continuously added to the

dewar by a liquifier and liquid from the dewar is transferred to the

magnet periodically when it is needed. Reading the helium level in

the dewar shows only how much liquid is in the dewar, the rate of

change of the level tells you how much excess liquid is being made

or, if negative, how long the magnet can be run under the present

conditions. The helium liquifier can be tuned up using this rate

information. Studying many level readings taken over a period of

time will give the period and quantity of the batch liquid transfers

to the magnet. The computer can store a large amount of data, some

of it up to three weeks old, on the disk which is then immediately

II - 3 TM687
2628.000

available for the operator to study. Data can be stored on

magnetic tape for indefinite periods and retrieved offline on a

large computer. Such magnetic tapes are far less bulky then

recording the same amount of information on paper. Finally, the

computer can make listings of selected data, including data

acquired up to three weeks earlier, and make graphs of such data

at the operator's request.

* In short, the computer can save operators time by recording,

analyzing, and displaying data and record it more frequently,

accurately, regularly and usefully than it could be done by hand.

In my experience at the 15' bubble chamber, there has been a real

need for data which is both accurate and quickly available to

improve both bubble chamber track quality and the efficiency of

bubble chamber operations.

At the present time, the computer has no control functions

over the bubble chamber. There are several reasons for this.

Early in the design of the computer system, it was decided not to make

operation of the chamber dependent upon the computer to the extent

of requiring the computer system to be up before the chamber could

run. Almost all simple routine control operations at the 15'

bubble chamber are done by commercial air system controllers. More

complicated control operations have long cycle times and are easily

handled by the operators once they have accurate data on which to

base their decisions, so the first priority for the computer system

has been to provide that data. Now that the data logging features

of the computer system are almost completely implemented, some

control functions for the computer may be advisable and these are

discussed in Section VII.

III - 1 TM687
262B.000

III. HARDWAPE

* The basic hardware used for the 15' bubble chamber on line

system is a rather typical Bison system provided by the Fermilab

Computing Department. The computer is a Digital Equipment

Corporation (DEC) PDP-11/20 with extended arithmetic element (EAE)

and 28 K (K=l024) words of memory, the maximum possible on B

PDP-U/20. Major DEC supplied peripherals include a 1.2 million

word cartridge disk, 800 bits per inch 9 track magnetic tape unit,

dual Dectape unit and a 30 character per second Decwriter terminal.

The Computing Department also supplied a memory display scope, 600

lines per minute printer/plotter, Bison interrupt and gate control

unit, and CAHAC! branch driver, together with the necessary inter-

faces and controllers.. A.more detailed list of the'hardware

supplied by the Fermilab Computing Department is given in Table I.

* The PDP-11/20 is a small computer with 16 bit words and a typical

instruction execution time of 5 microseconds. It has powerful.input-

output features which enable it to handle data transfers very quickly

and with a minimum delay to the computing which occurs in parallel.

Single precision integer arithmetic operations, including multiplication

and division (with the EAE), are quickly done and fairly easy to

program, but multiple precision operations take longer and are more

difficult to program. Floating point arithmetic hardware is not

available for a PDP-ll/2O and floating point software routines r-dce

considerable memory space and are rather slow. The speed of the

computer is more than ample for almost all of the demands at the

bubble chamber. The exception is in the analysis of data during the

chafiber pulse, as desribed in Section VI, but with careful programming

III - 2 TM687
2628.000

the computer execution speed is adequate even for this job. The

major shortcoming of the PDP-11/20 has been that the memory is

limited to 28 K words, and considerable programming effort has

been necessary to fit the program into this available memory, as

described in the next section. More information about the computer

can be found in DEC supplied literature 1 .

* W ith the computer hardware as outlined above, there are four

places where data, programs, etc., can be stored and these are

given in Table II in order o$ access time, with the fastest device

first. Both the disk and the De&apes are hardware organized into

256 word blocks, so the number of such blocks is given for the other

storage devices on the bubble chamber system for comparison. Since

the hardware block size on the disk is 256 words, this block size is

used throughout the online program for data storage. General data

buffers in memory are 256 words long and data is written on the

magnetic tape in 256 word records. The first word of each block

contains an identifying code, while the next three words contain

the date and time the data was created in the usual PDP-11 format.

Usually, the remaining 252 words contain data, see Section VII for

details. The disk is used by the online program to hold a large

number of data, control, and constants blocks which can be recalled

in a very short time (less than .125 seconds per block). The

magnetic tape is used to log data for later offline analysis. To

obtain more disk space for the online program, a second disk cartridge

is used to hold the complete set of disk operating system (DOS) pro-

grams and ,for program development. The Dectapes are not used directly

by the online program, but they are used to hold backup program source

III - 3 TM687
2628.000

files and to transfer the online program load module between disk

cartridges.

* Xn addition to the hardware supplied by the Computing Department,
we have added additional peripherals to tailor the system to meet the

needs at the bubble chamber. These include a CRT terminal (identical

to those used on the Beam Line MAC systems),. a fast (25 microseconds

per data point) Date1 analog to digital converter (A/D) with 128

multiplexed differential inputs (8 of which are sample and hold) and 8

digital to analog outputs, a digital voltmeter (DVM, 0.5 seconds per

data point) with 64 differential inputs, a Scanivalve air signal

scanner (0.167 seconds per data point) with 64 inputs, and a CAMAC

crate which contains modules for digital input and output as well as

8 channels of high speed scalars. The fast A/D is interfaced'to the

PDP-11 unibus for both programmed and direct memory data transfers.

The CRT terminal, DVM, and CAMAC crate are interfaced to the unibus

for only programmed data transfers. The air signal scanner is not

connected directly to the unibus but the addressing commands and

address read back are transmitted through the CAMAC crate, the

analog pressure transducer data signal input goes to the fast A/D,

and the data ready interrupt is handled by the Bison interrupt and

gate control unit. Two bubble chamber thermocouple read out systems,

each for 100 inputs, are connected to the computer via the CAMAC

crate. Each system is based on a special DVM which converts the

thermocouple reading into temperature in degrees Kelvin. Normally,

the computer controls each thermocouple system, although manual

operation is also possible in case the computer is down. In addition

to other digital inputs, the CAMAC crate also handles the output from

the computer to a 16 digit display of key chamber expansion parameters.

* These special devices are listed in Table III. More information

III - 4 TM687
2628.000

on the peripherals can be found in reference 2, from the manufacturer,

or in the manuals on file at the 15' bubble chamber.

IV - 1 TM687
2628.000

IV. PROGRAM INTRODUCTION

* One of the most important considerations for the bubble chamber

computer system is that it should require as little operator action

as possible. Many bubble chamber operators have had little

experience with computers and frequently they are almost completely

occupied with the operation of the bubble chamber itself. To meet

this requirement, the program has been written to be as easy as

possible to restart after a program bomb-out or a power failure,

once it has been restarted all data read in and logging is automatic,

and the commands to display data, alter limit checks, etc., have

been kept as simple as possible.

* To start the computer, the operator follows the instructions for

starting any PDP-11 (using DOS, the disk operating system3), which

include entering the current date and time and typing a few commands

on the DBcwriter. Once the program is started, the operator must

tell it where to start logging data on the magnetic tape, which

usually requires only one or two commands. All data read in and

logging will now begin and no further action is required of the

operator. The latest constants and control tables needed by the

program are stored on the disk, so even recent changes are already

available and do not need to be re-entered by the operator. Also,

the data logged on the disk when the program was running previously

are imme;diat~ezl~y -avaiZlable for display on op.er;ator ,c:omman-d.

* The read in of general data occurs automatically at predetermined

times using the internal computer clock. After the data has been

read in and processed, it is stored on the disk in a place determined

by the time when it was read in. The new data is written over older

data on the disk, so that the most recent data is available for the

IV - 2 TM687
2628.000

optional displays. The amount of recent data kept on the disk before

it is overwritten depends on the type of data. This varies from

4 hours worth (all fast data, see Sections V and VII) to 3 weeks

worth of the data averages. The data is also logged on magnetic

tape for later offline analysis. Every time the chamber is pulsed,

the computer is interrupted to read in data concerning that pulse.

After processing,this data is also stored on the disk and logged

on the magnetic tape. In this case, the last 1024 pulses are kept

on the disk as well as the average values which are saved for

three weeks.

* In most casesI display of information to the bubble chamber

operator is optional and requires that a command be typed at the

control CRT keyboard. Because data logging is automatic and because

a considerable amount of data is stored on the disk, the operator

need not look at the data at the time it is read in, but has the

freedom to look at it several hours or even several weeks later.

The operator can choose from several ways of displaying the data.

He may select a list of many different data points at one selected

time to be output temporarily on the memory scope, or permanently

on the line printer. Or, he can select a few data points (up to 7) _ -
and output a list either on the memory scope or line printer, of the

values at many successive times. It is also possible to display,on the

memory scope, a plot of any data point vs. time, four small plots each

of a different data point vs. time, or a plot of one data point vs.

another data point using many pairs of readings, each taken at a

different time. These plots can be copied from the memory scope to the

line printer/plotter, using the Bison hard copy facility'. Better

IV - 3 TM687
2628.000

resolution plots of any data point vs* time may be made directly on

the line printer using the Bison routine PLOTB5.
* Another feature of the program is the ability to make changes

to the constants and control tables stored on the disk. The CRT

control terminal is particularly useful for this, because the

program has been written so that old values of the constants are

displayed on a line and the operator need only run the cursor over

to the value(s) he wishes to change and type in the changes.

(Similar to the edit facility used in some cases on the beam line

MAC systems.) This is especially useful for modifying the limit

checks (similar to watch lists on the MAC systems) which may be

frequently changed by the bubble chamber operators. In this case,

the lower limit, current value, and upper limit are displayed on a

line and the operator can change the limit(s) while having the

current value right in front of him.

* The online program has been developed using'the DOS (Disk

Operating System) provided by DEC (Digital Equipment Corporation).

DOS provides the tools necessary to create and modify programs,

translate them to machine language and run these programs. Additional

tools are provided to assist in these stepsI all of which are de-

scribed in the literature which DEC provides 3 . When the online

program is running, a small portion of the DOS monitor (2655 words)

remains in memory to assist in input-output operations, provide error

diagnosticg assist in debugging programs, handle resetting the

computer clock, etc. It also provides an easy method of returning

to the DOS system when execution of the online program is terminated

by operator command.

Sk The online program also uses the BSX multi-task supervisor6,

IV - 4 TM687
2628.000

developed here at Fermilab, to allocate the control of the computer

central processor (CPU) to the various tasks which make up the online

program.

Each task.functions Logically as a separate subprogram. Usually,

each task is waiting until an event variable (word in memory) becomes

non-'Fero (an orwait on a list of two or more event variables is also

possible). In this wait state, the task neither requires nor

receives control of the CPU. The event variable can be set non-

zero either by another task or by an interrupt service routine

which receives control of the CPU as a result of a hardware inter-

rupt. When a task's event variable is set, BSX gives control of

the CPU to that task, provided no task with higher priority also

requires the CPU. Once a task receives control of the CPU, it

retains it until a hardware interrupt occurs or the task reaches

the point where it must wait on the same (or another) event variable

for some action, external to the task, to occur. This later case

may occur, for example, when the task cannot proceed until a certain

amount of time has elapsed or a requested output is completed, or it

may occur when the task has finished its job and must wait until new

work is required of it. In the case of a hardware interrupt, the

registers being used by the task are Slav-e-d

for the action specified by the interrupt.

and the CPU is then used

When the interrupt action

is over, BSX checks the higher priority tasks and gives control to

the highest priority task needing the CPU. Once all the higher

priority tasks are satisfied, BSX restores the registers and continues

the execution of the interrupted task at the point where it was

interrupted.

* BSX thus provides the means to do “first things first" which is

IV - 5 TM687
2628.000

vital to any real time program, while still allowing low priority

jobs to be completed as soon as possible. BSX also handles the

input-output operations to the standard Bison devices: the magnetic

tape, disk, line printer, memory scopec DEC writer (output only),

and the control CRT terminal. The first four of these use the

standard DOS device drivers which require 1353 words of memory. I

have modified the Decwriter driver KBZOHT7, written here at Fermilab,

for the control CRT terminal used for the online program. A cut

down version of KBI.OHT serves to drive the Decwriter for output only.

These two drivers require 830 words of memory. The BSX supervisor,

including the taskt&W~, requires 1515 words of memory.

* The online program currently contains 18 tasks, which are

supervised by BSX. Seven of these are required for the six standard

BSrSON devices listed in the last paragraph. (The control CRT

terminal requires two tasks, one for keyboard input and the other

to output on the CRT screen.) These tasks are described in the

BTSON program notes6. Five tasks are used for the reading, process-

ing and logging of general data and are described in Section V.

Three tasks are used to log and display the data gathered during

the chamber pulse, see Sections VI, VII and VIII. The clock task,

which &a eJlk&t%d :eyej$y kfi? deeanc% as a. cesdlt of-.&n .in@%r&&jt f-tom the

internal programmable clock8, is responsible for initiating the read

in of general data and setting event variables after an interval of

time as requested by the other tasks in the program, see Section X.

The command task waits for the operator to enter a command on the

keyboard, interprets: the command using the BISON subroutine CICONV',

and then carries out the action requested by the command, see

IV - 6 TM687
2628.000

Sections XT11 and IX. In the case of certain commands to list or

display data, which may take considerable time to complete, the

command task transfers the request to the low priority list task

and is then available to accept another command. The list task is

described in Section VIII.

* Outside this task structure of the outline program are several

interrupt service routines which are executed as a result of hardware

interrupts. Most of these interrupts indicate that an input-output

operation has been completed and the service routines are rather

short and serve to notify a task that the operation has been

completed and perhaps initiate further I/O operations. Two

exceptions are: the clock interrupt service, CKINTR8, which updates

the current date and time words stored in the monitor and starts

the clock task described above; and the pulse interrupt service

routine, described in Section VI, which reads in and processes

data during the bubble chamber pulse.

* A major problem when trying to do a big job with a small

computer, such as a PDP-11/20, is to fit the program into the

available memory. The remainder of this Section will outline the

steps that have been taken to reduce memory requirements of the

bubble chamber online program and some additional information can

be found in Section X. For the last year, every major addition

to the program has required considerable effort to reduce the

memory required for the previous version of the program, before the

new feature could be added.

To use the available memory as efficiently as possible, the

online program is written entirely in Macro assembly language.

Assembly language generally creates one computer instruction for

IV - 7 TM687
2628.000

each line of code, while a higher language, such as Fortran, will

generate many computer instructions for each line of code. Assembly

language, since it corresponds closely to the actual hardware of the

computer, allows the programmer to make full use of that hardware

to reduce both memory requirements and execution time for a given

job. Fortran, especially for the PDP-11 computer, is slower and

uses much more memory than assembly language. Disadvantages of

assembly language programs are: since it coupled closely to the

actual hardware of the computer, it is almost impossible to transfer

programs between different types of computers; it takes several

months for a programmer, even if he is proficient in Fortran program-

ming, to learn to write assembly language programs reasonably well;

and finally, even an experienced programmer takes far longer to

generate and debug programs in assembly language than in Fortran.

Cone estimate is that a good assembly language programmer averages

only three to five instructions per hour to generate and completely

debug a program.) In spite of these disadvantages, the need to

save memory has forced the use of assembly language programs

exclusively in the bubble chamber online program. Some Fortran

was used for small independent hardware check out programs, and in

early versions of the online program, before it had the current

capabilities which are described in this note.

Another restriction imposed by memory size and hardware limi-

tations has been to only store data as single precision integers,

W ith the 16 bit word size on the PDP-11, this allows a range of

-32,768 to +32,767. While this range contains ample precision for

almost all bubble chamber data, it does not lend itself directly

to convenient display of the information. Most of us are more

IV - 8 TM687
2628.000

familiar with a thermocouple temperature expressed as 123.4 degrees

Kelvin rather than just the integer 1234, and this becomes more

confusing if the rate of change of that thermocouple is expressed

as 10 rather than 1.0 deg/hr. The Bison output formatter program

FMTPUTlol was modified to insert a decimal point in such data before

it is output. At the same time, the eight largest negative numbers

were reserved as error codes and the formatter modified to print

these out as *El through "7. These error codes tell both the operator

and the program that the data is not present and that the value

should not be treated as valid data. Using different error codes

gives the operator an indication as to why the data is not present.

Numerical operations, such as converting the raw (as read in)

data to meaningful (inches, PSICA, etc.) units, calculating averages,

standard deviations, etc., have been coded using integer arithmetic.

Using the available software floaeing point arithmetic routines,

although easier to programr would have required more memory space.

The bubble chamber data which is available to the operator is

stored in 3584 blocks (917,504 words) on the disk. Clearly, it

would be impossible to store more than a very small percentage of

this data in the 112 blocks of memory available. Using the disk to

store data in this way, of course, required writing assembly language

programs to store data in the proper place on the disk and to retrieve

it on command.

A sizable number of control and constants blocks are also stored

on the disk and are used by the program to control its operations,

especially to systematically process the general data, as described

in Section V. Other disk blocks are used to hold temporary results,

IV - 9 TM687
2628.000

such s the partial sums needed to calculate means and standard

deviations every two hours. Currently, 96 such blocks are used,

which are equivalent to a sizable fraction of the available memory.

Such blocks are read into memory only when they are needed.

Another group of blocks on the disk is used to hold list

specifications. These are equivalent to the WRITE and FORMAT

statements that one would use in Fortran to outsput a list of

variables. Putting these specifications on the disk allows for

the possibility of a large number of lists, each with considerable

titles to clearly show what data 'are b.&&n~y. p-Ees.e&&e. The practical

limit to the number of lists possible is the time and patience of

the programmer in generating the blocks of list specifications.

Currently, 15 lists are implemented and 50 are possible, but this

limit could be easily increased if necessary. Twenty-eight

additional blocks on the disk are used to hold these list

specifications.

Whenever any of this information 4data, control and constants,

temporary results, or list specifications) stored on the disk is

needed, it is read into a general buffer which has been reserved

by the task needing the information. The task, after using the

information, releases the general buffer so it can be used by other

tasks. Currently, about 13 general buffers, each 256 words long,

are needed for the online program to function smoothly. Most of

these general buffers are generated in the remaining free memory

just after the online program execution is started. Before these

buffers are assigned, about 500 words of free space are needed for

a check to be sure that the proper disk cartridge for the online

program is in the disk unit. The online debugging system program

IV - 10 TM687
2628.000

(ODT) 3t which is very useful in getting the program to work properly

after modifications, is always linked and loaded with the online

program. However, if it is not going to be used, the memory space

it occupies is assigned as general buffers during the online program

start-up procedure. Finally, the code for the start-up procedure,

see Section X, is all in one area, and this area is also used as a

general buffer after the program start-up phase is complete.

Currently, there is enough space for 17 general buffers, if ODT is

not needed.

* Aside from increasing the amount of information storage

available far beyond the actual memory size, this extensive use of

the disk has another benefit. The storage on the disk is permanent

and all the latest information is immediately available when the

online program is started up after a power failure, program bombout,

or other interruptions. Changing control blocks, constants blocks,

or list specifications on the disk can be done (see Section IX)

easily and quickly while the online program is running. Changing

the online program itself requires 10 minutes or longer and requires

stopping the execution of the online program (including data read

in and logging) for that period.

Much of the online program &s needed to handle the read in,,

processing, and logging of data and this code must be in memory at

all times while the program is running. The portions of the program

which service the optional operator requests for lists, summaries,

plots, and modification of disk blocks are only needed when these

requests are made and have been overlayed3. Currently, there are

three overlay segments which share an area in memory about 4100

words long. If additional display features are desired, other

IV - 11 TM687
2628.000

overlay segments of similar length can easily be added without

using more memory. Use of the overlay feature allowed the program

to be increased by about 7700 words (the length of the two shorter

overlay segments) while only increasing the program memory

requirement by about 400 words (the overhead needed to handle the

overlaying).

* Each of the steps outlined above has enabled the online program

to accomplish more jobs without increasing the actual memory required.

Some of the steps have had additional benefits, but all the steps

have required considerable programming effort which is not at all

apparent to someone unfamiliar with small computers. A larger, more

powerful, and more expensive computer would reduce the amount of

such programming effort, but in this case, the cost of the software

was less than that for more powerful hardware. Supervisors should

realize, however, that a considerable programming effort must be

invested to effectively use a small computer system. In this case,

about 15 full time months of my time was required for the program,

spread out over the last two years.

TM687
2628.000

V. READING AND PROCESSING OF GENERAL DATA
* This section describes the handling of general data concerning

the bubble chamber and its support systems. This data is slowly

varying with time and uncertainties of a few seconds in the time

at which it is read make little practical difference. Taking

advantage of this fact, the data is read in and processed in large

blocks identified by the date and time the read in process started

and analyzed by subroutines which operate on all data in the block

in a systematic way. The control and constants blocks needed by

these subroutines to read in and analyze the data, are stored on

the disk and read into general purpose buffers only when they are

needed. Two general data b&ocks are handled in this manner. The

read in of the fast (slow) data block is initiated every l/64 (l/16)

hour by the clock task. Each data block is organized with an

identifying word first, then a date word and two time words. The

read in (which may take considerable time) and initial analysis of

each block, is handled by a separate task, so that these operations

can occur in parallel. The final analysis is done sequentially by

a,third task, which requires four general buffers and 1368 words of

memory. The read in tasks require 3675 words of memory (including

input device drivers, current values of the data for both blocks

and status bytes for each data word). When it is active, each

: read in task also requires two general buffers. Aside from saving

memory, keeping the control and constants blocks on the disk

allows permanent changes to be made in them while the online program

is running. This means, for example, that the read in of new pieces

of data can be added to ei@her &he slow or fast data blocks without

interrupting the read in and processing of all the other data by

v-2 TM687
2628.000

the online program.

The data for these two blocks can come from any of the devices

listed in Table IV. The two thermocouple (TC) systems each

contain a special digital voltmeter which reads the rather low TC

voltages and converts to temperatures in degrees Kelvin. The

setting time for reading each TC is typically three seconds and

there are currently about 60 TC's on each system. The gold chrome1

TC's are installed on the bubble chamber proper and the copper

constantan TC's, for historical reasons, are installed on the super-

conducting magnet, hydrogen refrigerator, and the room temperature

optics on the chamber. The digital volt meter (DVM) reads general

data with a settling time of 0.5 second. The high order octal

digit of the subaddress for the DVM determines one of four ranges

as given in Table V. The Fast A/D (Analog to Digital) converter

reads one general data point in about 25 useconds (not counting

program overhead time), with a least count of about 5 MV, and full

scale range of +lO volts. The Scanivalve reads sixty-four 3 to 15

psi air logic signals at the rate of six per second. These air

logic signals measure, for example, the amount various control

valves are open, pressures, flow rates, and liquid levels. Unlike

all the other devices here, which are random access, the Scanivalve

is sequential, so the 64 air logic signals are put sequentially

into 64 words in the fast data block. Digital input is handled by

sixteen 24 bit words in the CAMAC crate. Because of the mismatch

between the 24 bit CAMAC words and the 16 bit PDP-11 words and the

fact that digital inputs are not always exactly 16 bits long,

considerable shuffling around must be done by the CAMAC device

handler and the exact number of data points that can be handled by

v-3 TM687
2628.00

the available input cannot be given. Currently, the first eight

24 bit CAMAC words handle eight data points (magnet current, magnet

voltage, magnet power supply voltage, precision chamber static

pressure, and roll and frame for each of the two experiments) as

well as the data from the two TC systems and the subaddress read

back for the TC systems and the Scanivalve.

The rate of 16 reads an hour for the slow data block was chosen

to match the time required to read in all the TC's in each of the

two TC systems. The rate of 64 read's an hour for the fast data

block, could be doubled if there was a real need for data that often

and more disk storage was available to keep the data for a reasonable

amount of time. The present rate also allows time CQ read all 64 DVM

data points into the fast data block, if desired.

At the proper time to start a read in, the clock task sets the

appropriate event variable. As soon as the central processor is

available, the requested task starts the read in procedure. First,

two general PI?XIP;po'se.'.b,ixf~'ess,..aHe reserved. One will be used to hold

the raw data for this read. The correct ID code and current date

and time are put into the first four words of this buffer. The read

in control list is read from the disk into the other buffer. The

four ID, date and time words contain the date and time when the read

in control list was last modified; the remaining 252 words control

what piece of data is read into the corresponding location in the

raw data buffer. These words contain the device number in the high

byte (high order eight bits) from Table IV, and the subaddress in

the low byte. The device driver indicated by the first of these

control words is now called with the subaddress and location for

the data as arguments. Also included as an argument is a busy

v-4 TM687
2628.000

flag; the device driver will return zero here, if it has accepted

the input request or, if the driver is busy, it will return the

address of an event variable that will be set nonzero when the driver

is free. Also included in the arguments1 is the address of a counter

of the number of data points which have been requested but not yet

read in. The driver must increment this counter whenzit accepts a

request and decrement it when that data has been read in. When

this counter becomes zero, the driver sets an event variable to

show that no more data is outstanding; the address of this event

variable is also an argument.

The action of the drivers for the six devices listed in Table IV

is rather different. The drivers for the TC systems run as separate

tasks, because they actually read the requested TC every 0.5 seconds,

apply a test to see if the reading has settled and then wait, read

and test again if the reading is still changing., If a time limit

of 7.5 seconds elapses without convergence, or the meter overloads,

an error code is put in place of the data. The DVM driver sets

the requested address and then returns. After the 0.5 second for

settling has elapsed, the DVM sends an interrupt and the interrupt

service routine reads the data and sets the flag to show the DVM is

no longer busy. The scanivalve driver sets a counter for the 64

subaddresses, orders the scanivalve to the 0 address (home position)

and returns. When address 0 is ready to read, the scanivalve sends

an interrupt and the interrupt service routine reads the data, applies

a calibration (for the pressure transducer in the scanivalve), and

stores the calibrated data in the next location in the raw data

buffer. If all 64 data points have not been read in, the scanivalve

v-5 TM687
2628.000

is stepped to the next subaddress and the next interrupt waited for;

if all data has been read, the flag is set to show that the scanivalve

is no longer busy. The fast A/D and CAMAC inputs require only a

few tens of microseconds to read a data point, so these two device

&ive@s -im&di&t&~y~ redd. h.hec d&ha: add..h$an. ~$unnn.

The read in tasks contain five dif'ferent scanners of the read in

control list. The general scanner reads in devices numbered five

and higher and turns on four special scanners, one for each of the

first four devices in Table IV. Each of these scanners looks

through the read in control list for the next entry requesting the

read in of its device(s). The scanner then requests the device

driver to read the desired data. If the request is accepted, the

scanner then continues scanning the control list; if the request

is refused (device busy), the scanner waits until the device driver

is free and reissues the request. When each scanner finishes the

read in control list, it is marked done. When all scanners are

done and the outstanding data counter goes to zero, indicating that

all the requested raw data has been read in, the task goes on to the

next step. The special scanners are needed to allow the first four

devices, all of which are DVM based and hence, rather slow, to be

reading data in parallel. This reduces the read in time to the

minimum possible, without putting any restrictions on the order of

the requests in the read in control list. IZ some problem with the

read in of a data point occurs or there *as no request to read any

data in (zero device number in the read in control list), the

appropriate error code is put in place of the data.

The next step, once all the data has been read in, is to convert

the raw data to data in the appropriate physical units. First a

V-6 TM687
2628.000

flag is set to show that the data in the permanent 256 word memory

block is changing. Next the first of four constants b"kocks is read

from the disk into the second general buffer reserved by the task.

The constants blocks contain four entries for each of the 252 data

points. The first entry is a control word, which is followed by

three calibration constants; b, s, and a:

(physical data) = (raw data)+b*2s-16+a 1)

Since both data and constants are stored as single precision PDP-11

integers (15 bits plus one sign bit), the s acts as a sort of poor

man's floating point to increase the accuracy of the calibration in

equation 1. Bit 0 of the control wordY is set if this calibration

is to be applied. The remaining bits of the control word, if non-

zero, indicate a subroutine to call to do further operations on the

data. Currently, the only such subroutine is one which adjusts

the reading of control values (Scanivalve input) to be between

0 and 100% open. The calibrated data is then put into the permanently

assigned block in memory which contains the latest data points in

physical units. Once the first fourth (63) of the data points have

been processed, the second constants block is read into the general

buffer, used to process the next 63 data points in the block, and

so on. If the error code is encountered,in place of the data, that

error code is transferred to the final buffer without any modification.

If the result of equation 1 overflows, an error code indicating that

the data was too big is entered in the final buffer in place of the

data.

Next, any desired derived quantities, such as averages, differences,

etc. are calculated and put in the final buffer. Another possibility

v-7 TM687
2628.000

is to calculate the short term average of a key pulse parameter.

The sum of the data and the number of entries are stored in

memory after each pulse by a high priority task. Now the average

is calculated, the input memory words cleared for the next interval,

and the average stored in the final buffer. The specifications

for this step are stored.,in Ione ermore bLock$..on the disk, and the

first such block is now read into the general buffer. Unlike

previous steps which operated on all data points with very similar

operations, here only specific data points are used in operations

that can be very different. The control block has the usual first

four words, but the next work is a link (the block number) to the

next control block. The last (or only) control block will have 0

in this word. The operations to be performed are each specified

by a string of words in the control block; each string is terminated

by a zero. The first word in each string specifies the subroutine

number that the derived quantities processor will use. Next is a

word that specifies where the data is to be stored in the final

data buffer, followed by words specifying the input. These words

can be constants, specify data that has just been put into this

final buffer or the latest values of data in the other final data

buffer. This last possibility is one of the major reasons that the

latest values of the data for both the fast and slow data blocks

are kept permanently in memory. A second zero, after the one

terminating the string, ends action on the current control block.

If the link to the next block is nonzero, that block will be read

in and used; if it is zero, this step is complete.

Next, the flag is set to show that the data in the final buffer

is no longer changing, the two general buffers are released, and

V-8 TM687
2628,000

an event variable is set to signal the task which does further

analysis of the data that a new final data buffer is ready to

process. The final data is written on the disk in the area for

all data of this (fast or slow) type and, if the read request was

at an even k hour, the data is also written on the disk in the

area for quarter hour data of this type. Finally, if the magnetic

tape logging is active, the data is also written out as the next

record on the tape.

If a read in overrun occurs, i.e., the time to start the next

read comes up while the task is still in the raw data read in step,

the old read in is terminated, the error code indicating overrun

is put in the unread data locations, the task waits several seconds

for any outstanding requests to the device drivers to be completed,

and the old data is processed by the remaining steps of the task.

The read in of the new data bbqti begins.

The read in tasks for both the slow and fast data blocks are

virtually identical, in fact, they both share some re-entrant code.

Of course, they use different control blocks from the disk and

read different sets of data as a result. Some care must be

exercised in setting up the read lists for these control blocks to

be sure that no device is requested to read more data points than

it can in the available lime.

The data processing task is now activated by the event variable

which was set by the read in task after all new data was in the

permanent memory buffer. This task completes the analysis of the

new data. First, it reserves two general buffers for its own use.

Its first job is to add the new data to some partial sums which are

stored in six blocks on the disk, These partial sums are used

v-9 TM687
2628.000

every two hours to calculate the mean and standard deviation of

each point for all the reads during this period. The partial

sums require six words for each data point. The number of reads

so far in the two hour period is stored in the first word (single

precision), the sum of the data is stored in the next two words

(double precision), and the sum of each datum squared is stored in

the last three words (triple precision). The sums are updated by

reading the first of the six partial sum blocks into a general

buffer, adding the current data for the first 42 data points to

the 6x42 partial sum data words in the first block, and then writing

the new information back on the disk. This process is repeated for

the remaining five blocks.

The next step is to calculate the rate at which all the data

points are chang&ng with time. These rates are always expressed in

units per hour and are calculated with respect to the data read

15 minutes and 60 minutes ago. First, the data from 15 (60) minutes

ago is read into one of the general buffers. The data and time

words of this old data block are then checked to be sure that the

block contains data read 15 (60) minutes ago, if it doesn't; a flag

is set to show that there is no data for these rates. This could

occur, for example, if the online program had just been started after

having not been run for a significant period of time. The value of

the current data minus the old data (times four if calculating a 15

minute rate) is then stored in place of the old data. If either

the current or the old data is missing (i.e., an error code), the

error code for no data is stored instead. After these calculations

are complete, one of the general buffers will contain the rates

based on data read 15 minutes ago, and the other will contain the

v - 10 TM687
2628.000

rates based on data read 60 minutes ago.

* The program contains a special provision to automatically print

a list of the gold chrome1 TC values and rates on the memory scope

every time the slow data buffer is processed. This data has

become a virtual necessity for the bubble chamber operator to

correctly monitor and control the bubble chamber cooldown, particularly

in keeping the cooldown rates of the glass bubble chamber windows

within safe limits. Before the online computer system was available,

one operator was kept busy full-time watching no more than three or

four TC's, calculating the cooldown rates by hand, and controlling

the cooldown valves. A second operator was kept busy almost full-

time reading and recording all 60 TC's every half hour. W ith the

online computer system, the values and rates for all 60 TC's, as

well as averages of groups of TC's, are displayed 16 times an hour.

One operator, spending only part of his time, can easily control

the chamber cooldown and the danger of excessive cooldown rates on

the glass windows has been reduced considerably.

This list is printed out on the memory scope now by the data

processing task using the values stored in the permanent data block

in memory and the rates stored in the two general buffers. The

print of this list everytime the slow data is read can be turned

off when it is not needed.

* The next step is to check all the new data and give a warning

message and (optionalJy) an alarm,, if it is outside limits which

have been set by the bubble chamber operator. These checks may be

on the current value, the 15 minute rates, or the 60 minute rates.

Four sets of limit checks for each of the 252 points in both the

v - 11 TM687
2628.000

fast and slow data blocks are possible, but only a small subset of

these are expected to be active at any one time.

The control and limits used in these checks are stored in nine

blocks on the disk. Nine words are used for each data point. The

first of these is a control word which uses four bits for each of

the limit checks. Two of these bits indicate that the limit check

is turned off, or is to be made on the value, 15 minute rate, or

60 minute rate. The third bit, if set, will cause the alarm to

be sounded if the check is outside limits. The fourth bit, if set,

indicates that the operator has acknowledged the out of limit

condition for this check, and no further tests are made for it until

the Eif iS reset. The remaining eight words are the low and high

limits for each of the four checks.

The limit checking can be turned off by a command from the key-

board; however, if this is done, the alarm indication remains on

continuously to remind the operator that the limit checks are

disabled. If the limit checks are active, two more general buffers

are reserved. One is used to sequentially hold the nine disk

blocks containing the control and limit data. The data points are

checked sequentially, skipping any checks which are turned off,

acknowledged, or which refer to a value or rate containing an error

code. When a check shows data outside of limits, the alarm control

bit is tested and the alarm indication made if the bit is set. The

identification block for this data point is then read into the fourth

general buffer (unless it is already there because of a previous

limit check). The data point name, number, units, and format is

taken from this identification block for the message. The message

is always printed out on the decwriter for a permanent record and

v - 12 TM687
2628.000

includes the value (or rate) which was out of limits, the limits,
S or F (for slow or fast data block), the data point number, limit

check number, date, and time, in addition to the above. If the

check caused an alarm, a * appears next to the value. If the CRT

screen is not being used for some other purpose, the message will

also appear there, except that a blinking value replaces the * if

an alarm resulted. After the message output is complete, the alarm

indication is removed. When all limit checks have been made, the

analysis of the new data is complete and the general buffers

reserved for this task are released. The task then goes to an orwait

until more work is required of it.

If the task receives a second request for action while it is

printing out limit check messages, it prints a message that it has

aborted the list of messages and then goes to the new request.

Aside from completing the analysis of new data in the fast

and slow data blocks, this task has the third job of calculating

the means and standard deviations for pulse, fast, and slow data

every two hours. This requires three general buffers, one for

holding a block of the partial sums of the data read in the last

two hours, and one each for the output means and standard deviations.

The equations used are:

ii = f cxy 2)

Where the xi are the data points read, N is the number of reads,

G is the mean, and s is the standard deviation.

First, the means and standard deviations are calculated for

the pulse data read in during the last two hours. The partial sums

for this have been stored on the disk by a high priority task which

v - 13 TM687
2628.000

is activated after each pulse has been read in. The sums are

stored separately for each of four pulse numbers (first pulse,

second pulse, etc. of a multipulse sequence). Since 125 points

are stored for each pulse, three disk blocks are needed for the

six partial sum words per data point. These are read sequentially

into the first general buffer and the resulting means and standard

deviations stored in the second general buffer. The number of

pulses for the A (hadron) and B (neutrino).experiments are stored

* in place of the means for the last two data points. As a special

case for pulse number 0 (the first pulse), four scalars in the

CAMAC crate are read, reset, and stored in place of the means for

the previous four data points. These scalars are used to record

the number of accelerator clock pulses, the number of accelerator

pulses with beam in the Main Ring, and the number of pulses with

beam hitting the neutrino target during the last two hours* These

numbers have been used to study the various efficiencies which

affect the picture taking rate at the bubble chamber.

When the output block has been filled, it is written on the

disk in area for means and standard deviations for the first

pulse. If the magnetic tape logging is active, the block is also

written as the next record on the tape. After each input partS;al

sum block has been used, the first general buffer is cleared and

the current date and time put into the second through fourth

words. This buffer is then written back on the disk to clear the

partial sums for the next two hour period. The whole process is

then repeated for the data from the second, third, and fourth

pulses.

Similar operations are done next for the fast and slow data.

v - 14 TM687
2628,000

Six input partial sums blocks are used for each data type and the

means and standard deviations are stored in separate output blocks

and written into different areas on the disk. The means and

standard deviations are also logged as separate records on magnetic

tape. After completing operations on the slow data, the data

processing task releases tht _-lree general buffers and returns to

the orwait until more work is required of it.

The processing of each data point in the slow and fast data

blocks is controlled by a data status byte. These bytes are stored

in one block on the disk and read into a permanent block in memory

at program start up time. The result of the values assigned to

this data status byte are shown in Table VI. The value of 0 is

usually used to turn off the read of a bad input, f"or example an

open TC. Three is the usual value for an input which is functioning

correctly. Other values can be useful when debugging and setting

up the control blocks on the disk.

* The read in, analysis, and logging of data described in this

Section are all automatic and require no 0perato.r intervention.

The information needed by the program is stored in blocks on the

disk (see Table VII) which can be set up before a bubble chamber

run by one knowledgeable person. Permanent changes to these

blocks to, for example, read and process a new piece of ;data or

change the calibration constants for an existing piece of data

can be made quickly while the online program is running without

interrupting the data processing. Since the information is on the

disk, such changes do not have to be made again when the program

is restarted. These 54 blocks stored on the disk represent about

v - 15 TM687
2628.000

one half the 112 blocks of memory on this computer, which is the

maximum amount for a PDP-11/20. Using disk storage in this way

enables the program to handle four times the data points in a mu&

more general way, as compared to the code described in the next

Section. Both sections of code require about the same amount of

memory.

VI - 1 TM687
2628.000

VI. READING AND PROCESSING OF PULSE DATA

* This Section describes the handling of data which is acquired

and stored for each pulse of the bubble chamber. Unlike the slowly

varying data discussed in the last Section, chamber parameters

vary rapidly during the pulse and time is critical in correctly

reading them. Consequently, the coding which does this job, is

quite different in character than the rest of the online program.

Critical parts of the code have been written to be fast at the

expense of requiring somewhat more memory. Input and output

buffers are permanently assigned, instead of being available for

general use. The code is entered by an interrupt within a few

microseconds after the electrical signal which starts the bubble

chamber expansion system. Once entered, the interrupt code runs

on the highest priority and retains use of the central ptiocessor

for the duration of the chamber pulse (about 350 ms). Because of

time requirements and the specialized and varied character of the

data read during the pulse, all operations have been written out

in code and no tables, etc. are read from the disk during the pulse.

The one block of constants used is read when the online program

is started and retained in memory at all times. The code contains

three blocks (3x256 words) of output buffers which can hold the

data from six pulses. The three blocks are organized with an

identifying word first, followed by a date word. Next, are two

time words, followed by 125 data words, and this is repeated for

the second pulse in the block. The writing of this pulse data from

the output buffers onto the disk and magnetic tape, the addition

of the pulse data to partial sums blocks (for calculation of the

VI - 2 TM687
2628.000

two hour means and sigmas for each pulse number), and the display

of the pulse data are done by high priority tasks after the pulse

is over and the interrupt code has released the central processor.

The interrupt code, with its buffers and the one constants block

currently require 3586 words of memory: the high priority tasks

specifically for handling the pulse data require another 900 words

plus one general buffer.

Figure 2 shows the various steps taken by the code after the

interrupt occurs on the expansion value open electrical signal.

Also shown are a typical pressure curve inside the chamber vs.

time and the times that beam enters the chamber and that the lights

are flashed. ,Immediately after the interrupt occurs, eight channels

of analog information are latched in sample and hold amplifiers and a

direct memory access read of thBs data is started by the fact analog

to digital converter. Usually, six of these channels receive data

from dynamic pressure transducers at various locations inside the

bubble chamber, between the piston rings, and under the piston. The

remaining two channels measure the position of the chamber piston.

The latch of the analog data occurs in a few lo seconds, the read

in of eight channels requires about 200 1-1 seconds. Since the chamber

piston doesn't start to move until a few hundredths of a second

after the expansion valve open signal , these readings give chamber

pressure and piston position before the pulse starts, i.e. their

static values.

Next, the time since the previous interrupt, is determined using

the computer's internal programmable clock, which runs at 10 KHz.

If this time is greater than a preset value in the constants block

VI - 3 TM687
2628.000

(two seconds) the pulse is assumed to be the first pulse of a

possible multipulse sequence, if the time is less, then the pulse

is a second, third . . . etc. pulse of the sequence. A pulse

number is now assigned for this pulse, 0 means the first (or only)

pulse in the multipulse sequence, 1 means the second pulse, 2 the

third, etc. Separate timing constants for five different pulse

numbers are stored in the constants block and the correct set is now

transferred to the active timing locations. These timing constants

determine the length of steps A, B, and D, the length of the early,

beam, and late gates, etc. Next, the roll and frame for both the

A (hadron) and B (neutrino) experiments are read as well as the

precision static pressure transducer and the magnet current. The

next pulse output buffer (4 block long) is selected and marked to show

the three high priority tasks that it contains new data. The static

values of the eight A/D channels are converted to physical units

(i.e. PSIA or inches) and transferred to this output

transferred is the other data read in so far and the

described above.

buffer. Also

timing constants

The time remaining for step A, to the nearest 100 VS, is now

calculated (see Figure 2) and the processor goes into a loop which

keeps checking the clock until the necessary time has gone by.

Every 500 us, the state of eight binary bits is checked and the

time of any changes is recorded. These eight bits monitor important

events during the bubble chamber pulse and are given in Table VIII.

The checking of these eight bits is done every 500 ps in steps A,

B, and D; in step C it is done every 100 us to get more precise

values for beam and light flash times.

VI - 4 TM687
2628.000

Step B is started after the time for step A has elapsed. This

should be shortly before the chamber piston starts to move and the

chamber pressure starts to drop. The eight A/D channels are sampled

every 500 ps and then read using direct memory access by the fast

A/D converter, which takes about 200 is. After sets of data have

been read into two separate eight word buffers, analysis of that

data begins while the next set of data is being read into a third

eight word buffer. This analysis is done during read in, both to

minimize processor time at the highest priority level, and to save

core by using the same three eight word buffers over and over again.

* An important piece of information about the bubble chamber is how

much work is done by the expansion system on the chamber liquid

during the pulse. If too little work is done, tracks will not be

visible; if too much, track and parasitic bubbles will be too large

and the required additional cooling of the chamber liquid will

result in increased schlieren effects (local distortion of tracks

and fiducials due to temperature gradients in the chamber liquid

near the cameras), and may even overload the hydrogen refrigerator.

The work done on the chamber liquid is:

w= PdV
cycle

which can be approximated by (see Figure 3):

w=$ c (Pie1
cycle

+ 'i) ('i + 1 - vi) 3)

Data from the two previous reads is used to add one term to the sum

in equation 3, while the fast A/D is reading the current data into

the third buffer. Actually, there is enough processor time between

reads to calculate three different J'PdV values, using three different

VI - 5 TM687
2628.000

pairs of transducers. In addition to these calculations, the data

from each transducer is checked to see if it is a new maximum or

a minimum for this pulse and, if so, the value and time are recorded.

The coding for these calculations, controlling the fast A/D, and

checking the eight bits for timing, has been carefully written to

be as fast as possible in order to finish in 5C- $s. If any time

remains at the end of the cycle, the processor loops on the clock

until time to start the next 500 ms cycle.

Step C is started 20 ms before the time that beam is expected to

be injected into the chamber. The data from the fast A/D is switched

to go into an array of 81 eight word buffers and the analysis

described for step B above is no longer done between the 500 ms

reads. This is done so that the processor can be used to check

the eight bits for timing every 100 ps and to read two scalars which

are intended to record hadron beam particles entering the chamber.

It has the additional feature that the most interesting part of the

eight channels of transducer data, i.e. at beam time +20 ms, is

available for possible further analysis after the pulse is over.

The time near to beam time is divided into early, beam, and late

* gates. Under typical operating conditions, the bubble chamber is

track sensitive to particles arriving from about 10 ms before beam

time, to within a millisecond of the time the lights are flashed.

Early tracks will have low bubble density and a large bubble size;

late tracks will have small bubble size. Out of time tracks are

hard to analyze, especially for cross section measurements. The

hard wired bubble chamber gating can be set to inhibit taking any

picture with early or late hadron beam particles: recording their

presence with the computer and taking the picture provides

VI - 6 TM687
2628,000

physicists with the option of excluding those pictures from parts

of their analysis at a later stage. The signal from a coincidence

of scintillation counters in the beam is fanned out and counted by

two 100 MHz scalars in the CAMAC crate. One of these is read and

cleared at the start of the early gate to record counts occurring

since the last chamber pulse while the chamber was not sensitive.

It is read and cleared at the start of the beam _ ;e for early

counts, read without clearing in the center of the beam gate for

counts in the first half of the beam gate, read and cleared at

the end of the beam gate for the total number of counts in the

beam gate, and finally read and cleared at the end of the late gate

for late counts. The second scalar is used for more precise timing

information. It is cleared at the start of the early gate, then

read and cleared every 1 ms during the early gate. All the data

from the early gate is packed into one computer word with the

approl~G~~&e bit set if there were any counts during that time slot,

and the bit cleared if there were none. During the first half of

the beam gate, another computer word is used and the time slots

are reduced to 100 vs. The last half of the beam gate uses

another word and 100 1-1s intervals and finally a fourth word and

1 ms intertial is used for the late gate. This process is duplicated

for a second coincidence in the other two channels of the quad 100

MHz scalar in the camac crate. The CAMAC input is done by direct

commands to the CAMAC interface, rather than using the BISON library

program KSOO1lll, in order to save time.

Step D is started at beam time plus 20 ms. The read in and

analysis of data is done exactly as during step B, which is

described above. Step D should continue until the chamber pis,ton has

VI - 7 TM687
2628.000

returned to its Stiitial p&G&ion.

Now that all the data about the pulse has been read in, Step E

is started. First, the A/D data stored in the 81 eight word buffers

during step C is analyzed in the same fashion as was done in real

time during steps B and D. Next, the scalar, timing,JPdV, and

extreme pressure and stroke values, together with the times these

extreme values occurred are converted 60 the proper form and stored

in the output buffer. This includes converting extreme pressure

and stroke values to physical units using calibration constants

stored in the constants block and converting the [PdV's to joules

using the calibration constants for the two transducers used for

the integration. Times are recorded in 100 us intervals after the

start expansion signal. If an event didn't occur, the data was

too big, etc.; the appropriate error code is put into the output

buffer in place of the data.

The actual time of the beam timing signal, as recorded from

one of the eight timing bits, is compared with the time expected

as defined by the constants for this pulse number stored in the

constants block. If necessary, a change is made to the constant

controlling the length of step A. Likewise, the difference

between the flash and beam times is compared and bbe length of the

late gate adjusted if required. Other timing changes are not

normally required, if necessary, they can be made manually in the

constants block, via commands entered on the CRT keyboard.

The time of the minimum value from one pressure transducer is

selected to define when the minimum pressure occurred. The time

intervals between beam and pressure minimum and between beam and

flash are then calculated and stored in the output buffer. One

VI - 8 TM687
2628.000

pressure transducer and one stroke transducer are selected and the

difference between the appropriate extreme value and the static

value used to calculate the pressure drop and stroke,which are

stored in the output buffer. The selection of transducers is

determined by entries in the constants block. The beam to pressure

minimum time, pressure drop, and stroke, as well as one of the

three JPdV values is sent to a numeric display in the rack above

the expansion system controls. The data is sent to the display

serially, using eight bits of a digital output module in the CAMAC

crate. The last three data are converted to analog voltages and

available for recording on a strip chart in the Control Room. The
* pressure drop has turned out to be an accurate gauge of chamber

sensitivity and is used frequently by the operating crew to maintain

stable operating conditions during physics running and to quickly

reestablish proper operating conditions after periods of downtime.

In the latter case, 15 to 30 minutes of valuable beam time is saved

because a test strip is no longer required before starting physics

pictures.

Event variables are then set for three high priority tasks which

are responsible for furhher operations on the data in the pulse

output buffers. Finally, the CAMAC device handler is notified that

it has been interrupted and that it will have to repeat any routine

I/O operation that it may have been handling. The interrupt

operation is then ended and the processor released to continue its

normal task processing under the BSX system; The three high priority

tasks are responsible for: 1) writing the pulse data on magnetic

tape; 2) writing it on disk, updating the partial sums (used to

calculate means and standard deviations for each pulse number every

VI - 9 TM687
2628.000

two hours) on the disk, and updating partial sums stored in memory

for a few key parameters (used to calculate means every few minutes);

3) updating a listing of pulse parameters on the memory scope (if

requested) and/or a page listing of a subset of up to 15 pulse

parameters on the CRT display (if requested). Since these high

priority tasks operate on the data in the six pulse output buffers,

they need not finish their work before the next pulse interrupt

occurs. Up to five pulses interrupts from one accelerator beam

spill are stored in the pulse output buffers and the three tasks

will complete

spill without

* A special

their work on them before the next accelerator beam

losing any data.

effort has been made not to require any action by

the bubble chamber operators in order for the computer to correctly

read and store the data from the pulse. All the control information

needed by the program is stored in the constants block, the latest

version of which is read into memory from the disk automatically

when the online program is started up. This block is typically

set-up at the start of a run by one knowledgeable person and requires

a little modification during the run. The timing signals used

(start expansion and beam times) are the same ones that the operator

must set correctly for proper bubble chamber operation, whether or

not the computer is running. The operator has no additional timing

settings to make for proper computer operation. The data logging is

automatic and available for future display, subject of course to

the space limitations of the disk. Updating of the numeric display

in the expansion control rack is also automatic. The display of

more complete information is optionally available on demand.

VII - 1 TM687
2628.000

VII. DATA STORAGE
* In addition to small amounts of data storage in memory, the online

program uses the disk to store large amounts of data which can be

recalled quickly and the magnetic tape to store data permanently

for later offline analysis. One large contiguous file (BCDATA) of

4096 (256 wordl blocks on the disk is allocated for use by the

online program. As shown in Table IX, this file is organized

into sixteen 256 block groups. Fourteen of these groups are used

to store various types of data about the bubble chamber. Each

group is used as a circular buffer with the most recent data being

written over the oldest data of that type: One group is used to

store control tables, calibration constants, temporary results,

list specifications and other information needed by the online

progr=n I see Table X. Storage has been allocated so that all of

the most recent data is available for a few hours, a less frequent

sampling of the data is retained for a couple of days, and data

means and standard deviations are available for three weeks. The

16th group of 256 blocks is available for Future use. The Eemaining

704 blocks on the disk cartridge hold the DOS monitor, DOS system

programs PIP and VERIFY3, needed to transfer files between peripherals

and to verify the disk file structure, and the load modules for up

to three versions of the online program. Data is logged on the

magnetic tape just after it has been read in by the online program

in one long file. The online program automatically writes a

standard PDP-11 file label at the start of each new blank tape. The

file name includes a sequential serial number which is automatically

incremented for each new tape. The creation date is also included

in the file label. Next, the first 256 blocks (i.e. the first

VII - 2 TM687
2628.000

group) on the disk, which contain the control tables, etc. are

written on the new tape. This is done to provide a complete

description of the data on the tape for the (future) offline

analysis programs as well as to make a backup list of these

control blocks which can be used to restore the file on the disk

if necessary. If the program is restarted with a partially filled

magnetic tape, operator commands are available to properly

position the tape before data logging on it is resumed.

All blocks in the file on the disk and records on the magnetic

tape (except the file label record) contain 256 words and have the

same identifying information in the first four words. Word 0

contains a four bit code in bits 15-12 indicating what type of

information is stored in the block, see Table XI. The 12 low

order bits contain the block number, relative to the start of

the 4096 block BCDATA file, on the disk where the information is

stored. This is included to further specify the contents of the

block and to make restoration of the disk file BCDATA from the

magnetic tape easier, should this feature be required in the

future. Word 1 contains the date and words 2 and 3 the time, in

PDP-11 format8 , when the data was created or the control list last

modified. Usually, the remaining words contain the data or control

list, see Table XI for exceptions.

Data blocks in all the data groups in Table IX, except the last

ones for the values of pulse data, are stored within the group at

a position determined by the clock task (see section X) based on

the date and time that the read in of each data block began. If

the online program was not running for some period of time, no data

VII - 3 TM687
2628.000

will be read and no data will be stored in the relevant locations

in the various groups. These locations will still contain earlier

data. Before any data from these groups is used for a display, the

date and time words (words 1, 2, and 3 in the data block) are checked

to be sure that the data was indeed read in at the expected time.

If this check fails,the error code for no data is output instead

of the data, or if no data at all is available for a list, a no

data error message is output on the CRT screen.

The data storage for the values of pulse data (last entry in

Table IX) is sequentially with the pulses as they occur and not

time based. Therefore, no date-time checks, as described above,

are made before the data is displayed. A binary search of the 512

blocks is done during program start up to find the most recent

data, and storage of the next two pulses will be in the next block.

This means that the most recent 1024 pulses stored by the online

program are available for display, even if the program has just

been restarted. Blocks 3584 to 4095 are used as a circular buffer;

if the previous two pulses were stored in block 4095, the next two

pulses are stored in block 3584.

During the start up phase of the online program, standard DOS

program requests3 are used to find the disk address and length of

the BCDATA file. These are transmitted to the subroutine which

handles all disk input and output for the online program tasks.

When a task needs a disk I/O operation, it calls this subroutine

specifying the relative block number in the BCDATA file, the start

address of the (256 word) block in memory to be used for the

transfer, and either read or write as arguments using the DOS

Fortran call convention3. The front end of this disk I/O sub-

VII - 4 TM687
2628,000

routine is re-entrant and, if the subroutine is already busy for

another task, will cause the task issuing the new request to go

into a BSX wait until the subroutine is free. When the disk I/O

subroutine is free, BSX will give control of the CPU to the highest

priority task with a pending request. BSX can handle multiple I/O

requests to the same device directly, but this would require more

code (i.e. memory) in each task and would not honor the pending

requests in order of their task priority. The disk I/O subroutine

stores the relative disk block number in bits 11-O of the first

word in the block (writes only), checks that the requested block

is within the BCDATA file and issues a fatal error message if it

is not, calculates the actual disk address, and uses the BSX QTRAN

directive6 to start the transfer. The requesting task then waits

until the transfer is complete (notification is via a BSX event

variable) and then control is returned. The disk I/O subroutine

requires 67 words of memory.

When magnetic tape logging is active, program requests to log

data are handled by a high priority task. This task is activated

either by a pulse interrupt handler, or by a subroutine similar

to the disk I/O subroutine described above. When activated, it

searches the pulse output buffer control words for pulse buffers

which have not been written on tape yet, writes those buffers on

tape, and then marks them empty (in so far as the tape writing

task is concerned). If a general request to write data on tape is

pending, it will be accomplished now by the tape task and the tape

output subroutine notified via an event variable. The tape writing

subroutine and that part of the tape task in the main program

require 233 words of memory.

Tape positioning and tape label writing, etc., requires 1101

VII - 5 TM687
2628.000

words in the first overlay. These functions are only needed occa-

sionally, so putting the code in an overlay results in a net saving

of memory. This code is rather longer than is absolutely necessary

to satisfy two desires. First was to make it possible to resume

data logging on a tape at the point where it was interrupted by

power failure, program bomb-out, tape unit cleaning operation, etc.,

so that each tape would be full, instead of having a larger number

of partially filled tapes. Fewer tapes means less cost, less

volume required to store them, and less time and operator effort

required to change tapes. The second desire was to make the tape

handling commands as simple as possible while still providing

sequential, DOS tape labels and reducing the risk of data loss

through operator error.

When the online program is started up, or when the operator

enters a command to start logging data on the magnetic tape (after

this feature has been inactive), the mag tape status register2 is

tested and error messages written on the CRT terminal if the tape

unit is not ready or there is no write ring in the tape. Once

any such problems are resolved, the register is tested to see if

the tape is at the load point or not. If the tape is at the load

point (beginning), the tape unit is ordered to skip forward one

record. If the tape is blank (new), this would normally result in

a runaway tape unit, which would skip forward through the entire

tape (about 10 minutes). To prevent this, the magnetic tape byte

record counter is tested every 1.0 second and if it has not changed,

a power clear command is issued to stop the tape. After one second,

a fake "operation complete" interrupt is sent to the driver routine

to reset it and the tape is rewound. Since the tape has been

VII - 6 TM687
2628.000

verified to be a new blank tape, a file label record is written

on it containing the current date and a sequential tape number.

This sequence number was stored in the general constants block

which was read in from disk block 0 earlier in the program start-

up phase. The number in the constants block is now incremented

and the updated constants block written back on the disk to be

ready for the next new tape. Next, a general buffer is reserved

and the first block in the BCDATA file is read from the disk into

the buffer and then written out on the tape. This procedure

continues until the first 256 blocks on the disk have been written

on the tape, then the general buffer is released. Data logging

on the new tape now begins automatically.

If the original skip operation ended normally, the tape is

rewound to the load point and the first record read and summarized

by a message on the CRT screen. In the usual case that the record

is a DOS file label, the CRT message includes the file name and

creation date. The operator then has three options. If he changes

the tape+, the program notes the not ready condition of the tape

unit and automatically starts over again.with the procedure given

in the previous paragraph. If he gives the command to overwrite

the tape label and data, the program treats the tape as if it were

originally blank and proceeds as outlined above. If he wishes to

move the tape to the end of the recorded data, he uses the commands

given below.

If the tape was not at the load point when the online program

was started-up or tape logging requested, the tape is backspaced

one record using direct commands to the hardware registers. This

special backspace is used to avoid fatal errors from the DOS driver

VII - 7 TM687
2628.000

if the tape was positioned in the middle of the record. If the

backspace reaches the beginning of the tape marker, the program

then treats the tape as if it was originally at the beginning.

Otherwise, the record is read from the tape and a summary message

written on the CRT screen. In the usual case that it was a data

record written by the online program, the message includes the

ID, date, and time information from the first four words of the

record, see Table XI.

Once the summary message of the record has been written on the

CRT screen, the operator has several commands available to position

the tape and indicate where logging of data is to resume. The

tape unit can be moved forward or backward a specified number of

records. On forward moves, the program makes the checks outlined

above for blank tape and stops on blank tape, on end of file (EOF)

mark, at the end of tape or when the specified record count is

satisfied. After either move command, the previous record on the

tape is read, summarized on the CRT screen, and the tape positioned

just after that record. When the operator has moved the tape to

the desired position, another command starts the logging of data

on the magnetic tape. Unless canceled by the operator, the first

256 blocks from the disk are written on the tape before data logging

is resumed.

The default option for the skip forward command is for a very

large number of records (more than the tape holds), so this one

command alone is sufficient in most cases to position the tape at

the end of the data previously written on it. If data was being

logged over old data on a tape and no EOF mark was Put on the tape at

the end of the new data, the operator must find this point by using

VII - 8 TM687
2628.000

the tape positioning commands and studying the information in the

summary messages.

Once tape logging has begun, it normally continues until the

end of the tape marker is reached. The program then backspaces tl ne

tape, writes three EOF marks, rewinds the tape, and writes a

message on the CRT scre requesting a new tape. When the new tape

is loaded, the program will automatically start the procedure

described in this Section. Commands are also available to manually

start the end of tape procedure (to permit tape unit cleaning),

specify no tape logging (if the tape unit ie down or for program

del?ugging) , or to restore the disk control tables from the tape.

TM687
2628.000

VIII. DATA DISPLAY

Most data displayed by the bubble chamber online program is

optional and requested by operator command. Since the code to

make these displays is only needed when these requests are made,

most of it is overlayed, in fact it makes up the bulk of the three

overlay segments. The addition of more optional disp$ays and special

optional analysis of data would be relatively easy, because addi-

tional overlay segments can be added with little or no increase in

memory requirements. Although the most recent data is kept in

memory, most of the data available for displays is stored on the

disk (917,504 words). Rates are not stored on the disk, but are

calculated each time they are needed for a display.

Much of the data display requires the output of alphanumeric

characters on one of the four line output devices: the line printer,

memory scope, CRT terminal screen, and Decwriter. This data is

formatted using the Bison routine FMTPUT 10 which I have modified

to insert a decimal point in the data if desired and print out an

error code, see Table XII, if the data value is in the range

1000008 to 1000078 instead of the actual value. By specifying the

previously unused code 5 in bits 7-5 of the format input to FMTPUT,

a signed decimal integer conversion with these features is done.

The number $n bits 14-13 of the format specifies the number of

digits to the right of the decimal point. The resulting displays

show the data with decimal points in the usual, quickly understood

format, while still storing the data as single precision integers,

which is virtually required by the size and hardware of the PDP-11.

The modified FMTPUT requires 471 words of memory. All requests by

tasks to output a line of data are handled through a line output

VIII - 2 TM687
2628,000

control subroutine for several reasons. The subroutine reserves

the line output device for that task for a preset time interval

and puts tasks requesting the same device in the BSX wait state

until the time interval is over. This prevents mixed lines of

output for two different lists on one page, and also leaves

pages of output on the memory scope for at least a minimum time

so they can be examined. The subroutine inserts form feeds and

title, date and time information if requested. Finally, since

FMTPUT is not re-entrant, the subroutine will allow only one task

at a time to use it. The subroutine uses the BSX QTRAN directive6

to output the line after it has been formatted. The line output

control subroutine requires 679 words of memory, which include

line output buffers for the four devices.

One principal means of displaying data is by a list of many

different data points, all read in at (approximately) the same

time. These lists can be output either on the memory scope for

temporary use, or on the line printer for a permanent copy. The

list can include rate information, based on the difference between

data read some interval (15, 60, or 120 minutes) earlier and the

values at the selected time, and expressed in units per hour. These

lists are displayed on a relatively simple command typed on the

control CRT terminal keybroad by the operator. The command consists

of one or two letters specifying output on the memory scope or

line printer, a list number, a letter specifying the type of data

desired (C = latest read, A, Q, or M; see Table IX), and the

desired time expressed in days ago, hour of day, and minute of hour.

In the case of a request for pulse data, type A, the number of

pulses ago is specified instead of the time.

VIII - 3 TM687
2628.000

The command is converted by the Bison program CICONV', the

first overlay read into memory, and the command decoded and stored

by code in the overlay.

An event variable is set for the low priority lists task and

the command task returns to wait for another command. The list

routines occupy 591 words in the main segment and 1137 words in

the first overlay. The bulk of the part in the main segment finds

and reads the requested data blocks from the disk and calculates

the ratesi It was put in the main segment because it is also

used by the few variable summary code in overlay 2. The list number

in the command specifies the disk location of the first list

specifications block. A general buffer is reserved and the first

list specifications block is read into it. The last eight words

of this block contain data block codes which specify the data

blocks needed for the list. These can be slow, fast, or pulse

data, any specific block in the BCDATA file, or the data in the

edit buffers (see Section IX). In the first case values, standard

deviations, or (15, 60, or 120 minute) rates are also specified in

the data block code word. The required additional number of

general buffers is now reserved and the desired data is read into

the general buffers. For requests for bubble chamber data, the

data type, date, and time specified in the list command as well as

the data block code word are needed to specify what data is needed.

The date and time of these data blocks are checked and if they do

not match the expected values, flags are set to output no data

error codes in place of the data. Any desired rates are now

calculated.

The code words starting in word 5 of the list specifications

VIII - 4 TM687
2628.000

block are now scanned, the lines of the list constructed, and the

list output line by line. Before the first line is written, the

line output control subroutine is requested to send a form feed

and title containing the current date and time to the device (which

was selected in the operator command). The strings of list

specification code words consist of a control word first followed

by the required number of words specifying data location or

alphanumeric characters to be output as titles. The control word

is very similar to the format word needed by FMTPUT 10 to format

the desired data, but some bit combinations which are unused by FMTPUT

are used by the list routine to order special operations. The

number and use of the words following the control word are

determined by the repetition count and format code fields of the

control wWdzr whi.ch, are the same as thre FMTPUT form& word definitions.

Data location words specify one of the eight possible data blocks

(defined by words 248-255 of the first list specifications block)

to use and the offset of the desired data within that block. A

zero control word ends the line on the list, and a second zero

control word indicates the end of the list specification block.

If word 4 of the specification block is zero, the list is complete;

if the word is nonzero, that block is read in and used for continued

list specifications. If the list was on the line printer, a two

second timer is started and if no further lists to the line printer

are begun in that time, the list task is re-entered and it spaces

the paper forward 25 lines to move the printed text out of the toner

tray.

As pointed out in Section IV, the main motivation for using

this method to display lists was to put the list specifications on

VIII - 5 TM687
2628.000

the disk, thus relieving most of the memory requirements for this

job. Presently, there are 15 lists using 28 disk blocks for their

specifications, but this can easily be increased without

requiring any more memory. Another benefit is that new lists can

be added and old lists modified while the online program is running,

see ZLection IX. The data from the online program is so useful in

operating the bubble chamber that the operators dislike any

interruption, even for program improvements, so this feature is of

real importance.

Once the desired list at the selected time has been printed,

the operator can use the advance command to print out the same list

using data from the next (or previous) read interval. Optional

arguments of the command allow skipping read intervals and specifying

how many times the command is to be automatically repeated.

Figures 4 and 5 show examples of bubble chamber data output

with this list program. Figures 6, 7, and 8,also made with this

program, show the data that is currently read into the slow, fast,

and pulse data blocks. For the first two, the online program uses

the same two or three letter plus number code to name indiwcors

that are in general use at the 15' bubble chamber.

The 15 lists currently implemented include seven which output

data about the bubble chamber and its support systems and eight to

give information about the set-up of the online program. Of the

latter, three are used to give the read lists (Figures 6-8), four

give a list of the limit checks which are presently active or

acknowledged, and one gives a dump of the edit buffer.

A special optional provision is made to output the list of gold

chrome1 thermocouples on the memory scope each time the slow data

VIII - 6 TM687
2628.000

read in is completed (16 times per hour). This is used primarily

during cooldown when this information is vital for the operator to

correctly control the cooling rate of the glass bubble chamber

windows. A similar provision is available to automatically list

data taken every chamber pulse on the memory scope, but this is

less useful. When the chamber is being double pulsed, there is

insufficient time to print out all the data on the memory scope.

From the data taken every pulse, the operator can select up

to 17 data points to be output as a page (similar to pages in the

beam line MAC system) on the CRT screen. Fourteen pages are

possible, and this page display is activated by a one letter

command followed by a page number. This command calls the first

overlay into memory which then reserves a general buffer and reads

the block of page definitions. The data point numbers (word offsets

in the pulse data l/2 blocks) for the requested page are taken

from the definition block and saved in memory locations within the

main segment. The pulse ID blocks are then read sequentially into

the general buffer and the output format (which contains the decimal

point location, i.e., the scale factor) for the desired data points

is also saved in the main segment. The 14 character title for the

data point is taken from the ID block and written on the proper

line on the CRT screen. Since this title is then stored in the

CRT terminal memory, there is no need to save it in the computer

memory. When all the ID blocks have been processed, the general

buffer is released, a flag set to show that the page display is

active, and the overlay is released.

After every pulse of the bubble chamber, the pulse data display

task is activated and will update the CRT page display. Using the

VIII - 7 TM687
2628.000

data point numbers and formats saved when the page was requested,

this task deletes the seven characters on each line just after the

title and then writes the desired data at the end of the line.

After five chamber::pulses, each line contains the title of the data

point displayed on that line and the five most recent values of

the data point, earliest one on the left and latest one on the

right. This gives the operator information on the pulse to pulse

variation of the data and the CRT display is fast enough to output

even multipulse data between accelerator cycles. As a special

option, the hadron beam hits/misses vs. time can be displayed on

the 18th line of the page; time increases from left to right and

X's appear in time slots with at least one hit, see Section VI.

The line after the normal data point displays is deleted before

the line is written, so that several of these timing lines can be

displayed with the one from the latest pulse at the bottom.

Figure 9 is an example of this display, using simulated data when

the bubble chamber was not running.

As described in Section VI, four key chamber expansion parameters

(stroke, /PV, pressure drop, and beam to pressure minimum time) are

sent to a 16 digit display in the rack above the expansion system

controls every pulse. The first

converted to analog voltages and

strip charts.

three of these parameters are

are available for recording on

In addition to the lists, which display a large number of data

points at one time, it is possible to display a summary of a few

variabEes (up to 7) at many successive times. Frequently, knowledge

of the time variation of a few variables is important in understanding

some aspect of the bubble chamber operation. To obtain such a

VIII - 8 TM687
2628,000

summary the operator enters a command just like the list command

described above with a special list number. The command is decoded

by the same code in overlay 1 as was used for a list command. The

tiem specified is that for the end of the summary and the default

time is now. Since this would be the usual request, no time need

be entered in most cases.

After the command is decoded, overlay 2 is called and the code

there reads in a block of information from the disk which contains

the list of variables which were used for the last summary. The

seven old variable definitions are output one at a time on the CRT

screen as a command to define a variable for the summary list with

arguments specifying the old definition (see Figure 10). This

allows the operator to change the definition, but if no change is

needed, he need only press the return key. Specifying the variable

completely requires one letter to indicate the slow, fast or pulse

data blocks, the data point number (see Figures 6, 7 and 8) and a

three character code for value, standard deviation, or (15, 60 or

120 minute) rates. Once the variables are specified, a line is

written on the screen with the number of entries and the interval

in minutes used before. Changes to these parameters can be made

before the return key is pressed. If the interval is specified as

0 minutes, the program will compute the minimum interval for which

data is stored, using the first variable definition and the data

type specified in the list command. Next, an event variable is set

for the lists task and the command task returns to waiting for the

next command.

The remaining code is also in overlay 2 and runs on the lowest

priority lists task in order not to interfere with the data read in

VIII - 9 TM687
2628.000

and logging functions of the online program. Abstracting the data

from the disk blocks may take up to one minute if the maximum

number of 256 entries is requested and data is needed from blocks

in several different groups on the disk. First, the specified

variable list is scanned and the required set of code words,

identical to those stored in the last eight words of the list

specification block, needed to obtain the complete list of variables

is constructed. The output format and the information for a 20

character title for each variable is read from the various ID

blocks on the disk and stored in the same block as the variable

definitions. Using the input arguments, the date and time for the

start of the list and the interval between desired data is calculated.

The subroutine in the main segment is then called to read the nec-

essary data and calculate any required rates. This subroutine is

the same one used for the list display and is described earlier in

this Section. Since the subroutine may require up to three general

buffers for each of the slow, fast, and pulse data types (if all

were in the requested variable list), sequential calls are made

for each data type and the desired data is abstracted after each

call. This abstracted data as well as the date and time words from

the block containing the first requested variable are stored in a

general buffer. If the block of data containing the first variable

was never read, zeros are stored in place of the date and time words

to show that no data is available. This procedure is repeated for

subsequent times as specified in the operator commands. When the

general buffer is filled, it is written on the disk in the area for

this type of data (blocks 131-142). The block of constants, which

VIII - 10 TM687
2628.000

now contains the variable definitions, titles, and formats for the

new data, is also written back on the disk,

Finally, the data for the summary is read back sequentially

into a general buffer and the list output on the requested device.

This step is skipped if the no list option was selected in the

original command. In any case, the data summary on the disk has

been updated and is now available for the graphical displays

described below. 1244 words in the second overlay are required to

make this few variable summary. Figure 11 is an example of such

a summary. The actual commands used to make it are shown in

Figure 10.

Once the few variable summary list has been made, the data on

the disk is available for plotting. Plots on the memory scope are

made using the Bison subroutine PLOTA 12 . The operator enters a

simple one letter command, followed by a one letter option and the

variable number(s) which are defined when the few variable summary

list was made. If the option or variables are not specified, the

previous definition is used. Options are for one large line graph

of a variable vs. time, with or without symbols plotted on the

points and with optional error bars taken from a second variable.

The latter option only makes sense, of course, if the plotted

variable is a mean and the error bars are taken from the corresponding

standard deviation. Also, four small line graphs of different

variables can be put on the memory scope at the same time, either

with or without symbols plotted on the points. A scatter plot of

one variable vs. another can also be made. In this case, the

coordinate pairs come from data read in at (essentially) the same

time. Titles and tic values are also put on the graph. The hard-

VIII - 11 TM687
2628.000

4 ware and subroutine HCOPY' supplied by the computing department can

be used to copy the graph from the memory scope onto the line

printer, but resolution suffers somewhat in this this transfer.

Figures 12-15 were made by the online program using this feature.

The code to plot the graphs on the memory scope and make the hard

copy is all in the second overlay and requires the remaining 2481

words in that overlay.

When the operator enters the command to plot on the memory

scope, the second overlay is read into memory and the block

containing variable definitions, the previous graph option and

variables, etc., is then read from the disk into memory. The

graph options and variables are updated from the command, if

necessary, and the required three or four general buffers reserved.

The data blocks written on the disk when the few variable summary

was made are then read sequentially into one of these buffers and the

required data for the graph is put into the remaining buffers in

the proper format for PLOTA. One buffer contains the X coordinate,

another the Y coordinate, and the third (if required) contains the

corresponding error. The memory scope is then reserved, erased,

and the X axis title written on the scope using the line output

control subroutine described earlier in this Section. The remain-

ing arguments are then set up, and PLOTA called to output the line

graph, Y axis title, tic marks and labels. If symbols are requested,

the arguments aremodified and PLOTA called again to put them on.

If the option for four small graphs was selected, the above steps

have output only the first of these. The read of the few variable

summary disk blocks and general buffer fill is repeated for the

second graph, arguments modified and PLOTA called again (twice for

VIII - 12 TM687
2628.000

symbols on the points) to plot the second graph. This is repeated

for the third and fourth graphs. Finally, the data block with

the updated graph option and variable numbers is written back on

the disk and the ~eoeral. buffers released.

On a command to make a hard copy, overlay 2 is read into memory

and an event variable for the list task is set. The lists task

then calls HCOPY to copy the memory scope onto the line printer.

Since HCOPY was written with wait loops rather than interrupts to

signal the end of each I/O operation, it is necessary that it runs

an the lowest priority list task to permit the read in and data

logging functions of the online program to continue without delay.

It takes about 20 seconds to make a hard copy.

It is also possible to make graphs of one variable vs. time

directly on the line printer using the Bison program PLOTB?. The

resolution of such graphs is considerably better than those made

with the hard copy feature. The online program handles such

requests in a way very similar to that used to make graphs on the

memory scope, with the following exceptions. The code is in overlay

3 and the entire overlay is needed to make the line printer graphs.

The option to make four small graphs is not available or necessary;

the operation can enter four commands if he requires a permanent

record of four graphs. PLOTB was not written to make scatter plots,

so this option is not available. This job is switched to the lowest

priority task after the command has been decoded. This is necessary

because the plotter driver or hardware supplied by the computing

department does not currently work on PDP-11/20's, so I have written

simple instructions, similar to those used in HCOPY, to transfer

the data to the line plotter registers directly. The wait loops

VIII - 13 TM687
2628.000

tie up the task for the 20 seconds or more it takes to output the

graph. Since the other tasks all have higher priority, this

doesn't delay the read in and logging features of the online

program. Another problem with PLOTB is that it requires a full

character line for each X axis value, so a graph of all the data

available (256 time values) requires five pages. Figures 16 and

17 were made directly on the line printer by PLOTB and contain

the same data as Figures 12 and 13. Note that the actual

commands needed to make Figures 11, 12, 14, and 16 are shown in

Figure 10.

IX - 1 TM687
2628.000

*

IX. DISK BLOCK EDITING

Since the bubble chamber online program makes extensive use of

control tables, constants tables, and list.specification blocks on

the disk, some feature is necessary to enter and modify the infor-

mation in these blocks. This could be theoretically done with a

separate program, but there is a distinct advantage in being able

to do disk block editing with the online program. The BSX task

structure permits the disk block editing to be done by the online

program with no interference to the read in and data logging

functions of the program. A separate program would mean that

these functions would not be done while the editing program was being

run to edit disk blocks. The data from the online program is so

useful in operating the bubble chamber that any interruption, even

for program improvements, should be avoided if possible, so being

able to edit control tables and list specification blocks online is

of real value. More important still is that changing limit check

'values, which means editing blocks on the disk, is frequently done

by the operators and, therefore, should be as simple and quick as

possible. A separate program would take longer and require more

commands to be entered, compared to the present online editing.

All the code for the editing is in the first overlay, requiring

1573 words. For direct editing, the programmer first enters a

command to assign one or two general buffers for editing. Two

buffers are used as separate irnput and output buffers. In the editing

process, selected data is taken from the input buffer, displayed on

the CRT screen where it can be modified if desired, and then written

into the output buffer. For most editing operations, only one buffer

is needed and this is used as both the input and output buffer.

IX - 2 TM687
2628.000

These buffers must remain assigned for editing until all operations

are completed, but the editing programs need not remain in memory

during this period. Thus, a graph or a few variable summary (which

requires other overlays) could be made without spoiling the editing

process. Any editing command will recall the first overlay to get

the code required to complete the requested action. The secondary

editing commands, described later in this Section, do use the same

code as the primary editing command, so that their use would

destroy any other editing job in progress. Another command exi

to assign any location in memory as the edit buffer. This is

used as an aid in debugging the program online. Since the editing

code was put in the first overlay to save memory, only code in the

main and first overlay segments may be examined and changed with

the editing commands. When the programmer finishes his editing

operations, another command will release the general buffers

assigned above.

Commands, specifying any relative block number in the BCDATA

file on the disk as an argument, will read or write the selected

block of data into either buffer. Before a write is done, the

current date and time are entered in words l-3 of the block to

show when it was last modified. If tape logging is active, the

block is also written as the next record on the tape. This is

intended to be used by the (future) offline analysis programs for

an up-to-date list of the data being logged in each block on the

tape.

Another set of commands is available to take data from the

input buffer, display it on the CRT screen in the specified

format where it can be changed by the line edit features of the

IX - 3 TM687
2628.000

modified KBIQ~T sub-program (see Section X), and write the modified

data into the output buffer. In the case of octal or decimal

format, five words at a time are displayed on the screen. The

word offset of the first piece of data appears before the data.

The line is actually a command (written by the computer to itself)

to change the data in the output buffer, starting at the word

offset given in the first argument, to the values given in the

last five arguments. When the return key is pressed, the Bison

routine CICONV' will be called to convert the command, so the full

power of CICONV is available to specify the format of the arguments.

Since the word offset where the changes are to be entered appears

as an argument, it can be changed before the return key is pressed.

This provides the means to easily shift data around in the buffer.

The original command allows the programmer to enter the word

offsets of the first and last words he wishes to change. If these

specify more than five words, sequential lines of five words at a

time will appear on the CRT screen until the requested last word

has appeared. For long (~45) strings of ASCII (alphanumeric)

characters, conversion is unnecessary and CICONV does not accept

such strings, so the program uses these directly without calling

CICONV. The command for an edit of ASCII characters must specify

the word offset of the first character, the number of characters

and optionally the number of times to repeat the command and the

number of words to skip after the end of the previous string before

starting the next one. Another command can be used to change one

byte of data in the edit buffer.

* One of the lists available (Section VIII) will dump the contents

of the output buffer, in both octal and ASCII, on either the memory

IX - 4 TM687
2628.000

scope or the line printer. The editing commands described above

are very general and powerful, but require detailed knowledge of

the program and disk block organization to use correctly. Therefore,

a set of secondary edit commands have been written for general

operator use to do a restricted set of editing tasks on the disk

blocks. These commands call the primary edit commands, described

above, when necessary. The arguments are easy to specify and require

no detailed knowledge of the program or disk block organization.

Currently, there are five secondary edit commands. Four of

these are used to modify the control and constants tables on the

dibk for one dataxpoint in either the slow or the fast data block.

To specify which data point,the first two arguments after the command

are, one letter to specify slow or fast data block and the data point

number, see Figures 6 and 7. The command to adjust the calibration

constants used in equation 1 for that data point requires either two

or four additional numbers as arguments. The first of each pair of

numbers is the correct output for a given signal and the second is

the current output for that signal. If only one pair of numbers is

specified, only the zero (a in equation 1) will be adjusted, if

both pairs of numbers are given, both zero and gain (a, b, and s in

equation 1) will be modified. The other three secondary editing

commands concerning a data point require no additional arguments.

Instead, they will output on the CRT screen current values from the

control or constants tables on the disk, accept changes to that

information, and make those changes on the disk when the return key

is pressed. One command changes the data status byte, see Table VI

and Section V; the second modifies the four limit checks for the

specified data point, and the third changes the read in control list

IX - 5 TM687
2628.000

word, format, name, number, units, and calibration constants for

the data point. This third command is not intended for general

operator use, but has been included to save the programmer's time

and reduce the possibility of an error when the disk tables are

modified to cause the online program to read in a new piece of

data from an existing device. The fifth secondary editing command

will change the variables displayed on the specified page for the

CRT screen page display of data from the bubble chamber pulse. The

page number to be changed is specified as the argument after the

command. The data point numbers in the pulse buffer (see Figure 8)

being currently displayed are written on the CRT screen, changes

accepted, and the updated page definition block written back on

the disk.

All these secondary edit commands first call the code used by

the primary edit command to reserve one general buffer. The arguments

are used to determine which disk block is needed first and this

block is read into the reserved buffer. The desired words, in the

proper format, are written on the CRT screen for possible changes.

After any changes are made and the return key pressed, the new

information is put in place of the old in the edit buffer. In the

case of the calibration command, this step is unnecessary; the

arguments of the command are used to calculate the new constants

which are written over the old ones in the edit buffer. If required,

more lines are output to the CRT screen, etc., until all the

necessary changes have been made in the edit buffer. The updated

block, with the current date and time in words l-3, is then written

back on the disk using the same code as the primary edit command.

In the case of the command to set up the read in of a new piece of

IX - 6 TM687
2628.000

data, three disk blocks must be modified, so the required steps

are repeated until all blocks have been processed. Finally, the

edit buffer is released, the first overlay is released, and the

command task returns to waiting for the next command.

X-l TM687
2628,000

X. PROGRaM DETAILS

A. Program Start Up

Several jobs need to be done when the online program is started

up, and the code required to do them is not needed at any other

time. Such code has all been put in one area in memory and this

area is used as a general buffer after the start up phase is

complete. The start up phase also uses some code in overlay 1,

so this overlay is called into memory at the start of the phase.

Next, the interrupt vectors are set for the pulse, scanivalve, and

DVM interrupts. The CAMAC crate controller is initialized according

to the procedure suggested in reference 11. The DOS .INIT, .LOOK,

and .RLSE programmed requests3 are used to find the disk address

and length of the long data file, BCDATA, used by the online

program. This information is stored in the disk I/O subroutine and

used there before each disk data transfer to insure that the

request is within BCDATA. Illegai requests result in a fatal error

message, so that the online program cannot destroy other files on

the online data disk cartridge or even on some other cartridge

left in the disk drive by mistake. The .LOOK request requires an

additional 512 words of monitor buffers which are released as soon

as the request is over. Since most general buffers have not been

assigned yet, these 512 words of memory will also be available for

use as general buffers.

The console switches are checked and, unless a special code has

been set in the seitches, the memory used by ODT will be used for

general buffers. Two general buffers have already been assigned by

one of the program source files. The space between the start of

BXSCAN (or ODT if it is required) and the top of the monitor buffers

X -2 TM687
2628.000

is now assigned as general buffers, the starting address of each

256 word buffer is stored in the buffer control subroutine, the

flags for those buffers are cleared to show that they are

available, and the count of available buffers is increased by the

number of buffers assigned. Fourteen general buffers are assigned

here, or less if the available free space in memory will no& allow

that many. After buffer assignment, the DOS and BSX tables are

modified to bold the new program low address and stack address. A

message is then written on both the CRT screen and the Decwriter

giving the current date and time, total number of general buffers,

and the location and length of the BCDATA file on the disk.

Next, the latest general constants block (mostly used for the

pulse interrupt handler, Section VI) is read from block QI of

BCDATA and the latest status byte block (for slow and fast data,

Section V) is read from block 10. The 32 character title from the

general constants block and the date and time it was last modified

is written on the CRT screen. The subaddress to be displayed on

the DVM and both thermocouple systems, when they are not reading

data are also stored in the general constants block. Event

variables are now set which cause the respective drivers to output

these subaddresses. Finally, a binary search of the 512 block group

on the disk holding data from the last 1024 chamber pulses is done

to find the most recent block written there. The data buffer

containing the next two pulses will be stored in the next block in

the group on the disk and the display routines will use this most

recent block number when displays of all pulse data are requested.

This insures that the last 1024 pulses are always available for

display, even immediately after program start up. Finally, now

x-3 TM687
2628.000

that the general constants block has been read in, the mag tape

logging task is requested.

Once the above jobs have been completed, the memory area

containing the code, formats, etc., used in the start up phase is

released for use as a general buffer. Each task contains some

initialization code, which is usually just to put the task in the

wait state on the proper event variables. See reference 6 concerning

the tasks for the standard I/O devices and below for the clock task

which is more involved.

B. Clock task

On program start up, the clock task calls a subroutine which

sets up several peripheral devices for the online program. The

Bison program CKINIT8 is called to change the mode for the program-

mable clock, direct the clock interrupts to the Bison interrupt

handler, and cause these interrupts to occur every 4 second. I

have modified CKINIT so that the clock runs at 10 KHz (instead of

100 KHz) to simplify the coding in the pulse interrupt handler,

see Section VI. The Decwriter keyboard, which is not used by the

online program, is disabled and the CRT terminal keyboard interrupt

is enabled. The fast A/D converter is initialized, the scanivalve

interrupt enabled to the Bison interrupt and gate unit, and, if

pulse data has been started, any pending pulse interrupt is cleared

and then the pulse interrupt is enabled. All these changes must

be undone before returning to normal DOS operation and another

subroutine has been written to do this. Whenever control is to be

shifted to DOS, either by typing control C on the CRT terminal

keyboard or because of an error condition that must be reported, this

subroutine is first called to switch the peripherals to their DOS

x-4 TM687
2628.000

mode. When continue is typed on the Decwriter keyboard, the first

subroutine is called to switch the peripherals back to the online

program mode.

The clock task then uses the current date and time words (see

Table XI for the format) to calculate the (double precision) number

of l/64 hour intervals since the start of the base year, which is

specified in the clock task. The number of days in the base year is

also specified, so that this calculation is done correctly for two

consecutive years. This permits the number of l/64 hour intervals

to be con%inuous over New Year (when the bubble chamber always seems

to be scheduled to run), but the programmer should change the base

year sometime during the second year while the chamber is not running.

If the current l/64 hour number is different than the previous one,

a new l/64 hour interval has begun and an event variable is set to

read in the fast data block. The low order eight bits of the number

are stored; these are the offset, relative to the start of the

group for all fast data, where this new data is to be stored on the

disk. Both the current and previous l/64 hour numbers are shifted

right and this process repeated for the l/16 hour (slow data), &

hour (quarter hour data), and two hour (mean and standard deviations)

intervals. This procedure results in the data reads beginning at

even intervals based on the time of day and data storage on the

disk occurring with each group being used as a circular time based.

buffer with the periods shown in Table IX. The first time through

this code, after program start up, no event variables are set, so

that all reads start at the beginning of the next preset time interval.

The two hour event variable is set on program start up and the data

x-5 TM687
2628.000

processing task (Section V) will examine the first partial sum block

on the disk. If the date and time recorded there is within the

current two hour period no action is taken, but if it is not, the

means and standard deviations for the old two hour period are

calculated, stored in the proper disk location, and the partial

sum blocks cleared for the current two hour period.

Next, the clock task processes the timers. These are set up by

any task needing an event variable set after an interval of time. The

task calls a subroutine specifying the event variable address and the

number of + second intervals to wait before setting that event variable

nonzero. The subroutine first checks the event variable address against

those already stored in the currently active timers. If a match is

found, the specified interval is used to reset that timer. If no

match is found, the first inactive timer is set to the specified

interval and the event variable address stored. When the clock task

is executed (every % second), the timer intervals are checked and

counted down by one if nonzero (i.e., active). If this countdown

results in the interval becoming zero, the corresponding event variable

is set nonzero. If a task were waiting on this event variable, that

task would then be activated by the BSX supervisor when it became

the highest priority task needing service. Currently, 15 timers are

available, but this could easily be increased if necessary. The

timers require 106 words of memory for the code and storage: addi-

tional timers would require two more words each.

The state of six bits on the Bison interrupt and gate unit input

register are then checked. These indicate the open/closed state of

six bubble chamber control Valves; five are val%es which maintain

level in cooling loop heat exchangers and the sixth is the valve

X-6 TM687
2628.000

shown in Figure 1 to let liquid helium into the magnet. The number

of reads and the number of times each valve was found open are

recorded in memory. One of the derived quantities subroutines for

the slow data block (Section V) will compute the percent of time

open for each valve, store the result in the slow data block, and

zero the memory locations for the next interval. Some difficulties

(probably a program problem) have been experienced in always receiving

the interrupts for the scanivalve and the DVM, so a timer is set

after each operation that should result in such an interrupt. If

a real interrupt has not been received in this time, the clock task

will issue a fake one.

Finally, the clock task sends a pulse, via one bit of the Bison

interrupt and gate control output register, to reset an external

timing circuit. If this circuit is not reset for five seconds, it

will cause a bubble chamber alarm indicating that the online program

has bombed out. To encourage operators to get the mag tape logging

started properly, this pulse will not be sent out until this has

been done, so the bubble chamber alarm cannot be reset until the

mag tape logging commands have been entered. The clock task then

waits on the event variable which is set every % second by the clock

interrupt handler. It then repeats the procedure which starts in

the second paragraph of this subsection.

C. Command Task

A Qtran request6 is issued to input a line from the CRT terminal

keyboard and the command task waits until the line is entered and

the return key pressed. The Bison terminal driver' (KBIWlT) has

been written to accept output lines (to the CRT screen), even with

this input request pending, until the first character of the command

x-7 TM687
2628.000

is entered. Once the return key is pressed, the command is converted

by the Bison routine CICONV'. The @ symbol required by CICONV is

entered in the buffer by the command task and echoed on the CRT

screen by KBIBHT when the first character of the command is typed,

but does not have to be typed by the operator. This was done to

cut down the number of characters that the bubble chamber operator

must type for a command.

If CICONV detects an error in the command, an error message is

written on the CRT screen to show what was wrong and the task waits

for the next command. If the command is legal, CICONV calls the

proper subroutine to carry out the desired action. Such subroutines

generally make additional checks on the arguments: if some problem is

found, they change one number in their argument list and the command

task code will then write the proper error message on the CRT screen.

Because so many of these subroutines are in the first overlay, CICONV

has been slightly modified to call the first overlay into memory

and reserve it before such subroutines are called and to release it

after they return. Most of these subroutines require a very short

time to complete the requested action. If a more lengthy job is

requested, an event variable is set for the lists task and the

command task returns to wait for another command (see Section VIII).

Currently, 48 commands are defined, but only about 17 of them are

used by the bubble chamber operators.

D. Overlay Control

Before entering code in one of the overlays, the task must put

the desired overlay number into RO and call the overlay control

subroutine. The front end of this subroutine is re-entrant and, if

the overlay area is busy with another task, will put the task making

X-8 TM687
2628.000

the new request in the wait state until the overlay area is free.

When the overlay is available, the subroutine checks the overlay

segment currently in memory and reads in the requested segment

unless it is already there. A flag is set to show that the over-

lay is busy and the subroutine returns control to the address on

the top of the stack. This address was set by the task making

the request and can be a location in the overlay. If the overlay

control subroutine was called with the usual JSR instruction,

control returns to the next instruction in the task, which may now

call &&routines in the overlay segment. When the task has been

finished with the overlay code, it calls a subroutine which sets

the proper event variable showing that the overlay is free and

returns. These overlay control subroutines require 52 words of

memory.

E. General Buffer Control

Tasks requiring general buffers must first call the buffer

control subroutine, specifying the number of buffers needed and

address of a table for the buffer address as arguments. The front

end of the buffer control subroutine is re-entrant and, if the sub-

routine is busy with another request or there are not enough free

buffers, it will put the requesting task into the BSX wait state

on the appropriate event variable. If enough buffers are currently

free, the subroutine searches the buffer flags, assigning the free

buffers to the requesting task by making their flags busy and

transferring their start addresses to the table specified in the

subroutine call, until the request is satisfied. The count of

currently free buffers is then reduced by the number reserved for

for the requesting task and event variables set if 21, 22 l ==I 15

x-9 TM687
2628.000

buffers are still free. Control is then returned to the issuing

task, which then has exclusive use of the reserved buffers until they

are released.

When the task has finished using the buffers, it must call the

buffer control subroutine again to release the buffers, specifying

the same arguments as before, except with minus the number of buffers

to be released. The subroutine searches its table of buffer addresses

until it matches the first entry in the address table specified in

the call, marks that buffer flag free and repeats until the specified

number of buffers have been marked free. The count of free buffers

is increased by the number of buffers released and the event

variables described above are reset. Control is then returned to

the task issuing the request. The buffer control subroutine requires

120 words of memory, which includes the buffer flags and start

address for 17 general buffers.
F. CRT Terminal Driver

The Bison routine KBIOHT~ has been-modified to drive the TEC 430

CRT terminal used for the online program. The CRT terminal was

acquired because it is much more convenient for editing lines of

information as discussed in Section IX and makes the page display

described in Section VIII possible. The Decwriter was then available

to make a permanent log of limit checks out of range, Section V. The

improved line editing features are also available for the commands

entered by the bubble chamber operators who are already familiar with

an identical terminal in the bubble chamber control room, used to

broadcast bubble chamber status information on the neutrino lab TV

system. Finally, the CRT terminal does not generate piles of paper

containing commands which are usually of little.long term interest.

Aside from changing the address of the hardware registers from

x - 10 TM687
2628.000

those for the Decwriter to those for the CRT terminal, it was also

necessary to make changes to the driver to allow the improved line

editing features. An end of the line buffer pointer and a counter

of the total characters on the line were added. To output a line

of test for editing, the line is formatted as usual with FMTPUT 10

but then the line feed character is removed and the count of

characters put into the total character counter. The line is then

written on the CRT screen in the usual manner. An input request is

given to the CRT keyboard using the same buffer as was used for the

output. K'B~~EB was modified so that this buffer would not be

cleared by the input request if the total character counter was non

zero. K.BEWYT then adds the total character counter to the initial

buffer pointer for the end of buffer pointer. The character count

and buffer pointer originally in KDI@RT are used to indicate the

present position of the cursor on the CRT screen. A test was added

to the keyboard interrupt handler in KBSIOHT to first check the

input character and branch to a special code if it was a line

editing character.

The character

will now increment

pointer, be echoed

to

or

on

move the cursor forward or backward one space

decrement the character count and buffer

the

be stored in the buffer.

first characger or after

characters typed with the

CRT screen to move the cursor, but will,not

Attempts to move the cursor to before the

the last one are ignored. Normal

cursor in the middle of the line change

that character in the buffer, echo the character to make the change

on the CRT screen to the position over the cursor, increment the

buffer pointer and byte count, and advance the cursor one.space,

Characters added to the end of the line do the above as well as

x - 11 TM687
2628.000

increasing the total character counter and end of line pointer. Delete

or insert character codes result in an echo of that code to make the

change on the CRT screen, the movement backward or forward of the

characters in the buffer between the buffer pointer and the end of

the line pointer with the corresponding adjustment to the total

character count and end of the line pointer, and insertion of a

blank or removal of a character at the buffer pointer position. The

erase to end of line key is also enabled; this is done by echoing the

control character to make the change on the CRT screen, setting the

total character count equal to the character count, and setting the

end of buffer pointer equal to the buffer pointer. Rubout results

in the backspace and then delete character operations described

above. Other editing characters (used for page editing) are ignored.

When the return key is pressed, the space forward operations

are repeated until the cursor is positioned just after the last

character. The usual gRI;Q@P carriage return procedures are carried

out to ,insert a carriage return and line feed in the buffer and

notify the requesting program that the line input operation is

complete. Note that this results in the entire line being transmitted,

no matter where the cursor is positioned when the return key is pressed.

If the line feed key is pressed, the erase to end of line operations

are done first and then the control character is treated as if it

were a carriage return. Control U results in moving the cursor to

the start of the line, erasing the line on the CRT screen, clearing

the input buffer, clearing both character counters, and setting both

buffer po%nters to the start of the input buffer. This follows the

usual DOS convention.

If KDIDRT is entered with the total character count equal to

x - 12 TM687
2628.000

zero, the input buffer is cleared and both the buffer pointer and

end of buffer pointers set to the start of the buffer. When the first

character is entered from the keyboard, the CRT screen from the

cursor position to the end of the page is erased to clear out any

characters that may be displayed there (which would tend to confuse

the operator). Once characters have been entered on the keyboard,

the line editing features described above are available if needed.

G. Changes Needed to BSX

BSX will return control to the DOS monitor if one of a number

of error conditions are found or a control C is typed on the keyboard.

It is important that DOS will be able to run correctly in this case,

either so that the online program can be continued after certain

error conditions (i.e. a device not ready) are corrected, or so the

online program can be restarted easily. Some features of DOS are

useful in examining the state of the online program after certain

errors, which is frequently of use in debugging new versions of the

program. DOS will not run correctly unless the clock is returned

to its DOS mode of operation and the decwriter keyboard enabled.

(BSX already resets the interrupt vectors it modified when online

program execution began). BXCODE was modified to call the subroutine

to return peripherals to their DOS mode of operation before control

is returned to DOS, and to call the subroutine to set the peripherals

up for the online program again if the operator commands DOS to

continue the online program. These two subroutines are described in

Section XB, clock task.

The DOS driver for the memory scope, in DOS version 9, issues

a "VT not ready" message whenever the form feed character is sent

to the scope to start a new page. This is done to permit the

x - 13 TM687
2628.000

operator to read the previous page and then type continue when he

wants the new page. This online program saves pages on the memory

scope for 10 seconds by other means (see Section VIII) and the

above procedure, which halts online program execution and switches

to DOS, is not acceptable for an online program. BXCODE was

modified to check error messages before switching to DOS and if the

message was "VT not ready" the error is ignored. A second such

error with $ second is allowed to go through, because it would

indicate a real problem with the memory scope.

H. Memory Use

Table XIII gives a list of the bubble chamber online program

source files, including their functions and memory requirements.

Programs written specifically for the bubble chamber, Bison programs

written by the computing group at Fermilab, and DEC supplied programs

are listed separately. The total memory requirement is larger than

the memory on the computer; this is possible because the three

overlay segments share the same area in memory.

Table XIV shows the breakdown of memory use for different jobs

when the online program is running without ODT. Four general

buffers are not absolutely required, so 1583 words are available

for program expansion. Of these, I have reserved 128 words for

additional monitor buffers; perhaps this number could be reduced if

required. Of course, additional overlay segments can be added

which require little or no additional memory.

XI - 1 TM687
2628.000

XI. UNUSUAL PROBLEMS

A. Software

In 1974, when the first version of the online program was

written, minor changes had to be made to many of the BSX source

files because #a newer version of the MACRO3 program was used in

the DOS system for the bubble chamber computer. The problem was

that the new MACRO program did not consider .CSECT names as .GLOBL

definitions and I believe this error has been corrected in the

current Bison library tapes.

An amusing error was discovered in the Bison CKINTR8 routine

which caused the online program to bombout at midnight on the

computer's clock. The bubble chamber computer was nicknamed

Cinderella 14 because of this error. It occurred because CKINTR

did not actually change the date word until about seven minutes

after midnight and a fortran call for the current data and time

during this period would cause the program to bombout. Another

problem was that CKINTR lost 22/60 of a second every 9.11 minutes,

so the computer clock appeared to lose about one minute per day.

Both of these errors were corrected and a copy of the corrected

CKINTR given to the Computing Department.

The Bison subroutine ISQRT 13 , which calculates square roots

of integer double precision numbers was found to go into a loop

if given a number greater than or equal to 268,435,456 (i.e. 228).

This was solved by testing the number before calling ISQRT and if

it was greater than or equal to the above value, putting the error

code for data too big in the answer and not calling ISQRT. Since

the online program only uses ISQRT to calculate standard deviations,

numbers this large are of little interest.

XI - 2 TM687
2628.000

When overlays were first attempted, the DOS monitor would bomb-

out when trying to load the online program load module. After

almost a week's worth of effort, it was discovered that DEC had

published a patch to DOS version 9 (then in use at the bubble

chamber computer) to correct this problem, which only occurred

when trying to load programs longer than 16K from contiguous

files (which are necessary for overlayed programs). After the

patch was made, DOS version 9 worked properly and the bubble

chamber computer has since been shifted to version 10 which does

not have this problem.

As discussed in Section VIII, the Bison PLOTB' program to make

graphs on the line printer did not work correctly. The problem

was found to be either in the Computing Department plotter driver

or the plotter direct memory transfer interface on PDP-11/20

computers. I solved the problem by using direct commands to the

hardware registers to output the plot data. I believe that the

Computing Department is working on a longer term solution to this

problem.

B. Hardware

* Most hardware problems on the bubble chamber computer have

been rather obvious and, after the problem is reported, the DEC

repairmen can find the trouble and fix it quickly with little or no

input from the programmer. However, about once a year, a problem

develops which requires perhaps a week of effort by the programmer

to prove that it is caused by hardware and then another week or

two of the programmer's effort working with the DEC repairman to

get the problem localized and repaired. I would expect that any

small computer will require two or thcree weeks per year of effort

XI - 3 TM687
2628.000

by an experienced programmer to diagnose and localize such

problems. The computing Department personnel can frequently

offer valuable advice, but they seem to have little time

available to work on such problems. Most of the time must come

from the programmer assigned to the machine.

The first problem occurred shortly after the computer was

installed. The computer would randomly bombout, even when running

DOS systems programs, which should be well debugged. Intermittent

problems are very hard to locate, and the DEC repairmen tended to

blame noise on the AC power line. This cause was eliminated by

borrowing several AC power filters and using them in the computer's

power line. When the bombouts continued, even with the computer

on filtered power, the repairman seriously went to work and

finally fixed the problem. I must confess that I don't remember

which component was a fault, but after the repairs were made,

the filters were removed and the problem did not return.

The next problem occurred almost a year later. When a block

of data was written from memory to the disk, somet&mes a few words

in the block in memory were zeroed. When the usual DEC diagnostic

pro$rams failed to detect the problem, I wrote a short test program

specifically to test for this error. After this, the DEC repairman

found an obscure DEC diagnostic which would also detect the error.

The cause remained difficult to locate; at one point the error

would not occur if the expansion box was pulled out, but failures

occurred when the expansion was returned to its normal position.

Some unibus cables were replaced and better insulation put

between the wire wrap pins and the expansion box top cover and the

problem went away. We are not sure what the actual cause of the

XI - 4 TM687
2628.000

problem was.

The latest problem occurred last spring with the magnetic

tape unit. Fatal error messages and program bombouts would

occur when the tape was commanded to backspace. Occasionally,

it would backspace to the beginning. Two hardware problems were

finally found. A faulty capstan motor was not always running

at constant speed and the tape unit electronics did not have up-

to-date field changes. This latter problem was found by swapping

electronics with another mag tape unit. Considerable programmer

effort was required to test various combinations and fixes, since

the normal DEC diagnostics would not detect the problem. After

the motor was replaced and the electronics fixed, the errors no

longer occurred.

XII - 1 TM687
2628.000

*

XII. FUTURE POSSIBILITIES

Although the bubble chamber online computer system is now

essentially complete and has become more and more valuable for

bubble chamber operations during the last two years, one can

always think of new features that could be added and would

further improve bubble chamber operations. The addition of new

lists, the read in of new data points, and the calculation of

new averages, etc., can be done without changing the program

at all, but by modifying the control blocks on the disk, as

described in previous sections. As can be seen from figures

6 and 7, there is room for 95 more pieces of data in the slow

da&a block and 143 more in the fast data block. There are

many extensions possible to the few variable summary feature

described in Section VIII and some of these are outlined below.

Using the computer for control functions and several other

possible new features are also discussed. Which of these are

actually done depends on the needs of the bubble chamber

operating crew and the support given to this project by the

Laboratory.

The few variable summary (Figure 111, which gives the

values of a few variables at a large number of successive times

could be expanded to give maximum and minimum values, totals,

and means and standard deviations of each variable during the

time period covered by the summary. Much of the code required

for this already exists in the program. A straight line least

squares fit for each variable would give its average rate of

change during the time period of the summary. A straight line

fit of one variable vs. another would save much of the programmer's

XII - 2 TM687
2628.000

time when, for example, calibrating the dynamic chamber pressure

transducers against the precision static pressure transducer.

Histograms of the data in the summary and the selection of which

data is used for a display, depending on the value of another

variable, would give, for example, separate histograms of the

number of hadron beam tracks for the different pulse numbers

when multipulsing. Such information would permit rapid feedback

to the beam line and the accelerator and improve picture taking

efficiency. It might be useful to calculate a new variable from

two or more of the variables in the summary and be able to make

displays of this new variable. The ability to delete unwanted

entries from the summary before the displays or calculations are

made would be of use. A more difficult project would be to set

up a special, more frequent read in of a few variables and list

or display them using the existing features for the few variable

summary data. This might be useful, for example, to study the

pressures in various vessels and the control valve positions with

good time resolution during bubble chamber pressure test. It

would be convenient to make it possible to automatically update

any specific graph every time new data was read in. Since most

of the code for these projects could be in any overlay segment,

there is no basic difficulty in doing them, if enough programming

effort is allocated to the project.

Some additional programming effort on the graph displays

might be worthwhile. The Bison plotting routines could be modified

to use the format for the tic mark labels (PLOTA12) or the Y

coordinate values (PLOTB5) which inserts the decimal point in the

proper place (see Section VIII). Both routines already use

XII - 3 TM687
2628.000

mm&J to format these numbers, but some study of these rather

long programs would be necessary before this could be done

properly. More such effort could result in date/time labels on

the time axis of these graphs instead of the "intervals ago"

labeling done presently (see Figures 12, 13, 14, 16 and 17). An

effort is in progress to select intelligently rounded intervals

for the graphs instead of simply using the maximum and minimum

data values as is done presently. Both PLOTA and PLOTB are

advertised to have this feature as an option, but neither one

does it well enough to use.

Page displays on the CRT screen for slow and fast data,

similar to the existing feature for pulse data, could be added

without too much programming effort. Because of the slower read

in rat&e for these data, the initial request for such a page

should read from the disk and display the last five readings for

the selected data. Otherwise the operator would have to wait

too long to get useful rate information.

At present, the operator must specify a particular piece of

data by its data block and data point number, see Sections VIII

and IX. Usually he must look this up in the read lists, Figures

6 and 7. A dictionary look up routine could be written which

would accept the two or three letter plus number bubble chamber

naming convention, search the slow and fast data ID blocks on the

disk, and find the required block and data point number. Such a

routine would require a few weeks of programming effort, but

would save some operator time.

The present time of the pressure minimum inside the bubble

XII - 4 TM687
2628.000

chamber is currently just the time of the minimum pressure reading

from the selected transducer. Since this minimum is rather broad

and there is some noise on the signal, even after a filtering

circuit, a better estimate of the time of pressure minimum could

be obtained from a curve fit to pressure readings taken near

beam time. These readings are stored in the pulse input buffers,

see Section VI, but several weeks of effort would be needed to

write and debug the fit subroutine using multiple precision integer

arithmetic. If this is done, it would be almost necessary to be

able to display the pressure data points and the fitted curve on

the memory scope to check that the fit was being done correctly.

Some bubble chamber data varies rather rapidly and sampling

it about once a minute for the fast data block does not really

give a good idea of its short term behavior. Such data could be

read every % second by the clock task, just as the position of

the cooling loop valves is already done, see Section XB, and the

short term average stored in either the slow or the fast data

block in the same way. Digital input or the fast A/D converter

are the only devices on the system fast enough to input such

data. The gauge which measures the return flow from the bubble

chamber cooling loops is the most obvious example of an indicator

which should receive such treatment. Few memory locations and

only a small programming effort would be required to do this job.

The intensity of the proton beam on the target for Neutrino

experiments vs. the event rate in bubble chamber test strips has

been frequently very important in monitoring the performance of

the Neutrino beam line. The EM1 computer records this intensity,

together with the bubble chamber picture roll-frame number, but

XII - 5 TM687
2628.000

presently is not able to give an online listing of these data.

In practice, the experimenters record the intensity by hand from

the M?UC beam line computer display. If this intensity were

recorded by the bubble chamber computer in the pulse data blocks,

the few variable summary feature of the online program could

provide such a listing and save the experimenter their hand

recording job. Transmitting the beam on target intensity signal

from the MAC system could require another CAMAC crate and modules

which are rather expensive and new procedures to be learned by

the bubble chamber operators to set up the MAC system data transfer

correctly. Also, the signal arrives rather late after the pulse

and handling the data correctly would require considerable re-

programming for the bubble chamber online program. The transmission
15 of the signal on a TV sound channel , already developed for other

use8 at the bubble chamber, would be a cheaper and easier method

to get this signal into the bubble chamber control roon, where

the computer could read it in with the fast A/D converter. The

hadron beam counts into the chamber for each pulse are already

read into the computer, so such lists could currently be made

for hadron experiments.

As discussed in Sections V and X, the current date and time

are used to label all data read into the computer. The slow and

fast data blocks as well as all the means and standard deviation

blocks are stored on the disk in locations depending on the value

of this date and time. Therefore, it is vital that the correct

date and time be entered into the computer each time that it rebooted.

Errors in the past have caused complications and the loss of some

data on the disk. Efforts are currently underway to read the control

XII - 6 TM687
2628.000

room digital clock during the online program start up phase, and

to reset the computer date-time words from this clock. In addition

to reducing the possibility of incorrect dates or times, this will

also speed up the process of restarting the computer.

* It is expected that additional subroutines will be written

to calculate new derived quantities for the slow and fast data

blocks (Section V). Since data locations and constan,ts are

stored in the contra& block&s) on the disk, very little memory

space is required for such subroutines. One such subroutine

could convert the level of a cryogenic liquid in a storage dewar,

usually read as inches of water, into volume. Another could

calculate compression ratios for each stage of the compressors

in the bubble chamber support systems. When all the necessary data

has been interfaced into the computer, these compression ratios

would give an early indication of ring or valve problems in the

compressor. Another such subroutine could be used to convert the

nonlinear readings from vacuum gauges into linear pressures. A

subroutine to calculate the volume of gas, in a tank, under

standard conditions, from the temperature and pressure would be

very useful. When the required data has been interfaced, an

accurate inventory of helium in the system could be kept by the

computer. This would give an early indication.of losses and could

result in reduced helium purchases. I expect that other such

applications will be found for the online computer.

Currently, when the magnetic tape unit is cleaned or a tape

fills up and must be rewound and changed, about ten minutes of

data is not recorded for long term storage. However, this data

is stored in various locations on the disk. W ith some programming

XII - 7 TM687
2628.000

effort, the computer could keep track of which disk blocks have

not been recorded on tape. When tape logging was resumed, these

blocks could be read (one at a time) from the disk into the

general buffer and then written on the tape. Once this feature

becomes operational, further programming effort could give the

bubble chamber operator online access to all the data stored on the

magnetic tapes. W ith the chamber pulsing twice per accelerator

cycle, almost 1% hours worth of pulse data is stored on the disk.

During this time, the tape could be changed, if necessary, and

repositioned to the start of the interesting data. The operator

would then specify the type of data desired, and the computer

would read the tape, select the specified data, and write it in

the currently unused 256 block group on the disk. The tape would

then be repositioned and data logging resumed, with the unlogged

blocks from the disk going on the tape first. W ith some

modification, the present display routines would then be used

to study this special data. Up to a few months of programming

effort would be required to do all this, and some careful

consideration of actual experience with the online program should

be made before deciddng whether or not to go ahead with this

feature.

It would require far less programming effort and less operator

time to add a second RK05 disk drive to the system and use it to

store additional bubble chamber data, particularly the all fast

and all pulse data types. Another possible hardware addition

would be a second multiplexed digital volt meter. The DVM is

more accurate than the fast A/D and because of its several ranges,

no amplifier is required for each signal. Because of the rather

XII - 8 TM687
2628.000

slow settling time of a DVM, it would be better to add a second

system, rather than just increasing the number of multiplexed

inputs on the present system. The second DVM could probably

eliminate the lower ranges of the present DVM $see Table V),

and be made somewhat faster. In the longer range future, it may

be necessary to add additional digital input; it should match

the 16 bit PDP-11 words to reduce program complexity (memory

required) and not be CAMAC, since those modules are rather

expensive.

MO offline analysis program for the bubble chamber data tapes

has been written yet. This should not be too big a job, because

it can be done in Fortran on one of the large Fermilab computers.

The Computing Department already has subroutines to read tapes

from PDP-11 computers. There are also extensive display programs,

such as SUMX or gIg~~&~ in use on these computers. Putting these

elements together should not require more than several weeks of

programming effort,

For the reasons given in Section IV, the computer system does

not have any control functions as yet. During bubble chamber

runs, when the control room is always manned, some control

functions may be an aid to operator. Between bubble chamber

runs, only a two man crew is present at the chamber and it would

be of real value to reduce the time they must spend in the control

room; thus freeing them for maintenance and development jobs.

During these between run periods, large quantities of expensive

neon-hydrogen or deuterium liquids are stored in dewars. Liquid

hydrogen is transferred to condensers in these dewars and allowed

to boil off to compensate for the heat leaks into the dewars.

XII - 9 TM687
2628.000

Currently, the hydrogen comes from a storage dewar, and the air

controllers that operate the transfer valves sometimes do the job

rather inefficiently, resulting in a greater use of liquid hydrogen

than is absolutely necessary. Using the online computer to control

these transfers could potentially save liquid hydrogen and hence

money.

The large hydrogen refrigerator, used when the bubble chamber

is running, is much too big to operate for only the small amount

of liquid hydrogen needed to keep the storage dewars cold. The

laboratory may acquire a much smaller refrigerator for this job.

If this is done, it should be as automatic as possible, and using

the online computer system as a part of the control system for it

should be considered, starting with the earliest planning stages.

During running conditions, one worthwhile control function

for the computer would be to regulate the chamber temperature.

The heat load on the chamber, which must be removed by the cooling

loops, consists of a constant load and the heat caused by pulsing

the chamber. Because of the large mass of liquid in the chamber,

changes in temperature caused by changes in the pulse rate or

depth do not show up on the vapor pressure thermometers until

several tens of minutes after the change occurs. In the past,

better chamber temperature stability has been achieved by the

operator manually changing the cooling loop control set points on

the air controllers when the pulse heat load is varied. Better

temperature control results in better physics pictures, because

bubble size and density are more uniform and because schlieren

effects are minimized if there are no periods of excessive chamber

cooling. The computer already measures the pulse heat load, so it

XII - 10 TM687
2628,000

would be reasonably easy for it to use this information from the

previous measurement intervals plus the difference between the

current average chamber temperature and the desired temperature

to automatically enter new set points into the air controllers

for the next time interval. The time interval for the slow data

reads (l/16 hour) would be just about right for this operation.

The only new hardware required would be electrical to pneumatic

converters for the set points and the programming changes would

not be large, although some experimenting would be required to

get the proper control equations.

Another application of computer control would be to adjust

the expansion system drive gas pressure to get the desired

pressure drop during the pulse. Unlike the above case, the

chamber pressure drop appears to remain constant if the expansion

system control pressures remain constant. Therefore, I believe

that what is really needed here are better gressnre regulators on

the expansion system, rather than computer controll. The

efficiency of the hydrogen refrigerator is improved slightly if

the split of the warm compressor discharge gas to two heat

exchangers is adjusted so that the low pressure hydrogen return

and nitrogen vent gas temperatures are equal. The computer reads

in both temperatures with the copper constantan thermocouple

system, and could use this information to control the valve which

splits the flow. However, experience shows that, once this valve

is set properly, it need not be adjusted unless drastic changes

are made in the refrigerator operating conditions. The option of

calculating the temperature difference between the two thermo-

couples, setting up a limit check and alarm on this difference,

XII - 11 TM687
2628.000

and letting the operator adjust the valve himself would be nearly

as effective and would require no program changes at all.

* This section on future possibilities is certainly not a

complete list of all that could be done with the computer system

and is only intended to be a rough guide for the immediate future.

I am sure that continued experience with the computer under

actual running conditions will add new items to this list and

that practical considerations will mean that some of the items

will never be done.

*

XIII. CONCLUSION

The online computer system described in this note has successfully

met the need at the 15' bubble chamber for accurate data logging

and display of this information. Knowledge of the time rate of

change of various parameters is vital at a bubble chamber, and

the system has been designed to provide this knowledge. When the

computer system has been particularly successful in meeting some

bubble chamber need, a short description appears at the appropriate

position in the $@B$, and these have been flagged for general

interest. Since bubble chamber operators are, in general,

unfamiliar with computers, a special effort has been made to

minimize and simplify the actions required by the operator for

proper computer operation. A major problem with any small computer

is to fit everything required into the restricted amount of

memory available. This has been solved by making extensive use

of the disk and by coding the entire program in assembly language.

Much of the time invested in the program was needed to accomplish

this, and a large part of this note has been used to describe

these efforts in detail.

* The computer system periodically reads in data about the

bubble chamber, converts this data to physical units, and calculates

additional data which depends on one or more of these data points.

The present program will handle 512 such pieces of information.

During every chamber pulse, data is read and processed by the

computer. This results in an additional 125 pieces of information.

All this data is saved on the disk for various lengths of time and

written on magnetic tape for long term storage and offline analysis.

Almost one million words of information on the disk are available

XIII - 1 TM687
2628.000

XIII - 2 TM687
2628.000

to the bubble chamber operator for displays on command. These

displays may be lists or graphs; all of which are set up to include

the time rate of change of the selected parameters.

* I believe that some of the techniques, and perhaps even the

actual code, developed for the bubble chamber online program,

would be of use in other small computer projects at the Laboratory.

A list of the most likely candidates follows, with the section

reference in parenthesis.

1.

2.

3.

4.

5.

6.

7.

CRT terminal driver (X. P)

Timers (X B)

General buffers (X E)

Control and constants tables on the disk (V)

Editing of blocks on the disk (IX)

List specifications on the disk (VIII)

Start up code in an area which is then used as a general

buffer (X A)

8. Magnetic tape positioning and labeling (VII)

9. Insertion of decimal points into integer numbers for

output (VIII)

10.

11.

Error codes stored in place of data (VIII and Table XII)

Handling data as systemm&ically as possible (V)

* Much of the bubble chamber online program is, in fact, a general

data logging and display program. With rather minor modifications

it could be used for similar applications at the experiment areas

for beam line data, at the new helium liquifier plant, or perhaps

at the accelerator. Tables I and III list what hardware would be

required, but data input devices would be rather different for most

of these possible applications. In fact, most of these would

XIII - 3 TM687
2628.000

probably use a data transfer from an existing computer system

(i.e., the beam line MA!! systems).

Some information about my programming experience with this

system may be of interest to anyone planning-a small computer

project. Because of the memory limitations discussed in Section

IV, the final version of the program is written entirely in

assembly language. A novice assembly language programmer, even

one with considerable Fortran experience, will require three to

six months of full time practice to become reasonably proficient

(i.e. greater than 50 % of his potential rate) in writing and

debugging such code. If he spends less than half time on this,

the initial period will tend toward the upper limit of six man

months. One estimate is that a good, experienced assembly

language programmer will generate only three to five lines of

code per hour. This estimate includes the time to plan the

program, write the instructions, enter them into the computer,

and debug the program. Code which is not used in the final program

is not included in the yield.

* I estimate that I have spent 15 man months on the program,

spread out over a two year period. Deducting three months of

learning experience leaves 2,000 hours of productive programming.

The programs listed in Table XIIIA require 16,000 words of

memory, so I managed to fill eight words per hour. PDP-11

instructions require onei two, or three words of memory with the

average between 1.5 and two. This gives a net yield of four to

five instructions per hour. The programs in Table XIIIA contain

11,000 lines. Perhaps 10% of these are comments and other non-

code generating lines, so this estimate also gives five lines of

XIII - 4 TM687
2628.000

code per hour.

Depending on ones other duties and how much already existing

code can be used, programming a small computer can easily take two

or three calendar years. Because of the learning curve and the

need to write certain genera& routines at the beginning, the

usefulness of the programming effort during the first year can

appear quite small, Some Fortran programs can be us&d during

this period to make the computer do a few jobs, and this was done

on the bubble chamber system. Because of memory limitations, the

functions of these Fortran subroutines were later coded in assembly

language. I would be happy to discuss interesting aspects of the

bubble chamber system with anyone planning a small computer

project at the Laboratory, and I urge any Laboratory Physicist

who does not have a permanent appointment to talk to me before

committing himself to such a project.

Hsi Feng has been responsible for much of the hardware, from

planning through the commissioning of the special hardware devices

(Table III), which has been vital to the success of this project.

Charles Mangene has done much of the- work necessary to interface

the special devices to the computer. Many members of the bubble

chamber operating crew have helped to interface bubble chamber data

to the computer and contributed valuable suggestions. Jim Early

has assisted on several of the recent program improvements and

has taken over the computer system.

TM687
2628.000

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

"PDP 11/20 Processor Handbook", DEC, 1971

"PDP 11 Peripherals Handbook", DEC,.8973. BISON
Documentation. Fermilab Computing Department.

"DOS/BATCH Handbook", DEC-ll-ODBHA-A-D, December, 1974

"BISON Display Hardcopy", Bison PN-19.1 Fermilab Computing
Department

"PLOTB-Versatec Plotting Package", Bison PN-48

"BSXD User Manual*', Bison PN-4.1 (including appendices)

"Teletype Driver", Bison PN-23

"Minimal Routines for the IWIlD!? Programmable Clock",
Bison PN-43

"Command Interpreter", Bison PN-11,.2

"ASCII Output String Formatter Subroutine", Bison PN-33.1

"Kinetic Systems KS0011 CAMAC Branch Driver Handler",
Bison PN-12.1

"Bison Plotting Package", Bison PN-2.5

"Integer Square Root Function", Bison PN-25.1

I believe that the second, more general meaning of Cinderella
also applies to the bubble chamber online computer system.

"An Analog Signal Transmission and Distribution Method",
H. Feng and C. Mangene, TM-675 Fermilab, July, 1976

TM687
2628.000

* TABLE I - HARDWARE SUPPLIED BY FERMILAB COMPUTING DEPARTraENT -

MANUFACTURER

DEC.

DEC

DEC

DEC

DEC

Datacraft

DEC

DEC

DEC

DEC

DEC

DEC

DEC

Versatec

DEC

DEC

. DEC

Tektronix

Kinetic Systems

Fermilab

DEC

MODEL

PDP 11/20

KWll-P

BM792-YB

LA30

TCll

TU56

TMll-A

TUlO-EA

RKll-CA

RKO5-AA

200A

AAllA

AAllD

BA614

6I3

KSOOll.

DR11-G

DESCRIPTION

Central Processor

Extended Arithmetic Element

Programmable Real-Time Clock

Auto Loader

8K Memory

20K Memory

Decwriter terminal 30 characters/
second

Dee tape controller

Dual Dee tape drives

Magnetic tape controller

Magnetic tape transport, 9 track,
45 ips, 800 bpi

Disk controller

1.2 M word cartridge disk drive

Printer/Plotter 600 lines/minute

Tektronix scope control

D/A subsystem for above

D/A converter (2) for above

Storage scope

CAMAC Crate Interface

Bison Interrupt and Gate Control

General purpose interface for above

Blocks*

112

4,800

1,156

~21,000

TM687
2628.000

TABLE II - STORAGE DEVICES

DEVICE

Memory

Disk (RKll, RKO5)

Two Dectapes (TCll, TU56)

Magnetic Tape (TMll, TUlO)

* 1 block = 256 (16 bit) words

TM687
2628.000

* TABLE III SPECIALIZED HARDWARE ADDED FOR THE --
151V BUBBLE CHAMBER COMPUTER SYSTEM

MANUFACTURER MODEL

Date1 Systems System 256

Date1 Systems 2561-PDP-11-l
Date1 Sq7stems 2561-PDP-11-2

TEC 430
DEC DLllE

Data Precision 3500
Fermilab --

DEC DRll-C
Scanivalve SSS 64 XZBM

Standard Engin-
eering 1410

Jserger OR

Jaesger IB

Lecroy 2550B
Jordway 70A Al
Fermilab --

Fermilab --

DESCRIPTION

Fast A;%D with 128 differential
inputs (inc. 8 samples & hold)
and 8 D/A outputs
Register interface for above
Direct Memory transfer inter-
face for above
CRT Terminal
Interface for above
Digital Voltmeter, 5 l/2 digits
Multiplexed input for above
Interface for above
Pneumatic Multiplexer for 3-15
psi signals

CAMAC Crate
CAMAC 48 Bit digital ou@put
module (4)
CAMAC 48 Bit digital input
module (8)
CAMAC quad 100 MHz scalar module (2)
CAMAC crate controller
Computer controlled addressing
for the gold chrome1 thermo-
couple system
Computer controlled addressing
for the copper constantan ther-
mocouple system

TM687
2628.000

* TABLE IV GENERAL DATA DEVICES -

DEVICE NUMBER DESCRIPTION

Gold Chrome1 Thermocouple System

Copper Constantan Thermocouple System

Digital volt meter

Reserved for future DVM use

Fast Analog to Digital Converter

Air logic system Scanivalve

Not Used

100

100

64

128

64

CAMAC digital input see text

DVM SUBADDRESS
(octal)

TM687
2628.000

TABLE V DIGITAL VOLTMETER RANGES -

oxx

2xx

3xx

lxx

LEAST COUNT' FULL SC2iLE
(l-w) (volts)

1000 $ 11.999

100 3.2767

10 0.32767

1 0.032767

TM687
2628.000

TABLE VI SEQW AND FAST DATA STATUS BYTE CODES -----

DATA STATUS BYTE RESULT

0

1

Data point is not read in (no data
error code is put in its place)

Data point is read in but no con-
version to physical units is done.
The raw data value is transferred
to the final buffer, but it is not
included in the futher analysis
(derived quantities, partial sums
or limit checks)

All normal processing steps are done
on the data point, exeept no limit
checks are made.

All processing steps are done on
the data point.

TM687
2628.000

TABLE VII DISK BLOCKS USED --

OF BLOCKS USE -_--

6 Store partial sums N (1 word), C x (2 words),
C x2 (3 words).

9 Limit Checks

6 ID and format

TO DEFINE ONE BLOCK OF GENERAL DATA - -

STRUCTURE(words used for
each data point)

1 Read in control list High byte= device number
(Table IV)
low byte = subaddress

4 Convert raw data Control word,b,s,a (equ-
to physical units ation 1)

1t Calculate derived String for each operation:
quantities subroutine number, output

location, input locations
or constants, fl.

Control word, 4 sets of
lower and upper limits.

Format, label number, label
name (4 ASC II char.), units
(4 ASC II char.)

TM687
2628.000

BIT

0

1

2

3

4

5

6

7

TABLE VIII EVENTS DURING
FOR WHICH TIMING IS -

EVENT

CHAMBER PULSE
RECORDED

Beam for A (Hadron) Experiment

Beam for B (Neutrino) Experiment

Light Flash Trigger

Data Box Trigger

Camera Trigger

Latch Valve open/closed

Recompression Valve open/closed

Expansion Valve closed (Open is start of
timing measurement).

TM687
2628.000

* TABLE IX ORGANIZATION OF THE DISK FILE BCDATA - ----

RELATIVE BLOCK USE TYPE
NB&IBERS

o-255

256-511

512-767

768-1023

1024-1279

1289-1535

1536-1791

1792-2042

2048-2303

2304-2559

2560-2815

2816-3071

3072-3327

3328-3583

3584-4095

Control Tables, etc.
(See Table X)

UNUSED

Means, slow data

Std. Dev., slow data

Means, fast data

Std. Dev., fast data

Means and Std. Dev.
Pulse # 0

Means and Std. Dev.
Pulse # 1

Means and Std. Dev.
Pulse # 2

Means and Std. Dev.
Pulse # 3

Slow Data

Fast Data

Slow Data

Fast Data

Pulse Data

--

--

M

M

M

M

M

M

M

M

Q

Q

A

A

A

DATA DATA
STORED BETAliNED

--

--

2 hrs.

2 hrs.

2 hrs.

2 hrs.

2 hrs.

2 hrs.

2 hrs.

2 hrs.

--

--

512 hrs.

512 hrs.

512 hrs.

512 hrs.

512 hrs.

512 hrs.

512 hrs.

512 hrs.

l/4 hrs. 64 hrs.

l/4 hrs. 64 hrs.

l/16 hrs. 16 hrs.

l/64 hrs. 4 hrs.

PULSE 1024 Pulses

TM687
2628.000

BLOCK
NUMBER(s)

pl

l-9

10

11-20

21

22-25

26

27-32

33-41

42-47

48-50

51

52-55

56

TZiBLE & ONLINE PROGRAM CONTROL TABLES, ETC
STORED ON THE DISK ---

DESCRIPTION - FUNCTION

6 Partial sums to calculate
slow data means and standard
deviations

1 First block of control strings
to calculate fast data block
derived quantities

1 Latest general constants (read
in during program start up)

9 Other versions of general
constants

1 Latest general data status
bytes (read in during program
start up)

10 Unused, intended for other
versions of status bytes

1 Slow data read in control list

4 Conversion of raw slow data to
physical units

1 First block of control strings
to calculate slow data block
derived quantities

Slow Data limit checks

Slow Data ID and Formats

unused

Fast data read in control list

Conversion of raw fast data to
physical units

TM687
2628.000

Table X Con't

BLOCK NUMBER
NUMBER(s) OF BLOCKS

57-62 6

63-71 9

72-77 6

78-80 3

81-92 12

93-99

100

1@&105 5

106-129 24

130 1

131-142 12

143-185 43

186-199 14

200-249 50 First list specification blocks

250-255 6 Unused

7

1

DESCRIPTION-- FUNCTION

Partial sums to calculate fast
data means and standard deviations

Fast Data limit checks

Fast Data ID and formats

Unused

Partial sums to calculate pulse
data means and standard deviations,
three blocks each for pulse num-
bers 0,1,2, and 3.

Unused

Contents of CRT screen pulse
display pages

Pulse data titles and formats

Unused

Few variable summary parameters

Few variable summary data

Unused

List specification continuation
blocks

TM687
2628.000

TABLE XI ORGANIZATION OF THE 256 WORD BLOCKS - e-p-

A. All blocks contain:

1. Word 0

a) l Bits 15-12, Code identifying t$zpe of
information

Code (Octal) Meaning

00 Control tables, constants tables, etc.

06 Means and Std. Dev. of slow data

07 Slow data

10 Few variable summary data

12 Means and Std. Dev. of fast data

13 Fast data

16 Means and Std. Dev. of pulse data

17 Pulse data

b) l Bits 11-O. Block number:, relative to the
start of BCDATA, where the information is
stored on the disk.

2. Word 1. Date = (Year - 1970)* 1000 + day of year

3. Word 2. High order time word

4. Word 3. Low order time word, where seconds since

miijEjgrgHf = - 1
60

6
HTW * 32,768 + LTW

1
5. Unless otherwise specified the remaining words

contain the data, control tables,etc.

TM687
2628.000

Table XI Can't -

B. Pulse Data

1. Words 4-128. Data from one pulse

2. Words 129,130. Time of next pulse

3. Words 131-255. Data from next pulse

C. Means and Std. Dev. of Pulse Data

1. Words 4-128. Means

2. Words 131-255. Std. Dev.

D. Control String to Calculate Derived Quantities
and List Specifications

1. Word 4. Link to next block

a) l Nonzero. Block number, relative to start of
BCDATA, to use next

b) l Zero. This is the last block to use for this
operation

2. Words 248-255. For the first list specification
block only, these words contain data block codes
specifying what data is to be used.

TM687
2628.000

TABLE XII ERROR CODES+

ERROR CODE

"0

MEANING

No data...Bata was not read
or inputs for the calculation
were not available

*1 Data was too big

*2 Data was too small

"3 Bad data from device

*4 CAMAC error

*5 Computer did not have control
of device subaddress.

*6 Read in overrun. Not enough
time to read data

*7 Control table error

TM687
2628.000

1.

2.

FILE NAME MEMORY WORDS --

BCTAB.MAC 957

AUTC.MAC 285

3. CKS.MAC 42

4.

5.

OUTCON.MAC 679

PDP.MAC 697

6.

7.

8.

9.

10.

MTR.MAC 233

SDR.MAC 723

LISTS.MAC 591

DATAP.MAC 1,238

DEV.MAB 703

TABLE XIII ONLINE PROGRAM SOURCE FILES

A. Programs Written by the Author Specifically for
the Bubble Chamber System

FUNCTION

BSX task table, clock and
command tasks

Driver to read the gold chr-
omel thermocouple system

Prevents more that one task
from using KSOOll, repeats
operation if KS0011 inter-
rupted

Control of output to alpha-
numeric line devices

Task for real time display
of pulse data, control of
general buffers

Portion of mrq tape control
task in main segment

Task to read in slow data
block

Portion of output list task
in main segment

Task for analfsis of slow and
fast data; @axcQ$ae@s means
and std. dev. for all data
blocks every two hours

Drivers for DVM, fast A/D
CAMAC digital input and
Scanivalve

TM687
2628.000

TABLE XIII Can't

FILE NAME -- MEMORY, WQ:mS FUNCTION

JJ.. PAP.MAC I, 882 Pulse interrupt handler,
reads pulse data

12. PWP.MAC 579 Task to output pulse data
to disk. Also contains the
special start up code whose
memo:+ is than .uaed as a
general buffer

13. DFIOWF.MW 136

14. Dl.MAC

15. CUTC.MAC

16. FDR.MAC

17. DKEDIT.MAC

18. CMDS.MAC

19. LOV.MAC

20. FVS.MAC

Driver to output (only)
on the Decwriter, d&rived
from &ZGQ@T.

148 Disk input-output control
subroutine, overlay control

264 Driver to read the copper
constantan thermocpuple
systdm

544 Task to read in fast data
block

1,799 Editing of control and con-
stants tables on the disk,
S&k .upt :a$.p~;l-!s.@ dgs@ap
pages on the CRT (in over-
lay 1)

1,185 Misc. commands, g-&n&r
of mag tape control task
(in overlay 1)

1,137 Remainder of list task
(in overlay 1)

1,700 Makes the few variable
summaries, set up calls
to PLOTA for graphs on memory
scope, and calls HCOPY
(in overlay 2)

TM687
2628.000

TABLE XIII Con't

FILE NAME MEMORY WORDS --

OIL. GPRINT.MAC 685

B. Bison Programs Which Have Been Moderately Modified
for the Bubble Chamber Online Program

23. FMTPUT.MAC

694

471

Driver for CRT terminal7

Formatter for line alapha-
numeric outputlO

24. BXSCAN,etc 1,370

25. 117

26. CI.GOW~FA& 246

27. KSOOll.PAL 296

28. rFlFINKT. ,;eEtxz 609

130

30. Bcmxp3 .-PAL

31. PLOTA.PAL

50

1,351

32. HCOPY.PAL 114

C. Bison Programs Used With Little or no Modification

FUNCTION

Sets up calls to PLOTB
for graphs on the line
printer (in overlay 3)

BSX supervilSOr, including
links to standard devices6

Clock interrupt set up.and
handler10

Command interpreter9

CAMAC driver"'

Subroutines used by PLOTA,
mostly in overlay2

Calculates interger square
roots

Converts BCD to binary

Elatzsz graph6 on the.
memory scope (in overlay 2)12

Transfers graph from the
memory scope to the line
printer (in overlay 2J4

TM687
2628.000

TABLE XIII Con't

FILE NAME MEMORY WORDS FUNCTION --

33. PLOTB.PAL 3,284 Plots graphs on the line
printer (in overlay 3)

D. DEC DOS Programs3

34. ODT 1,584 Program debugging, space
used for general buffers
unless ODT needed

35. $LOAD,etc 292 Read in overlay segments

36. ---m--- 2,655 Resident monitor

37. ----m-w 1,353 "Monitor buffers", mostly
device drivers

E. Large Buffers of DPta Storage (not included above)

38. BBCD

39. TCDAT

40. PDP.MAC

41. PAP.MAC

42. SDR.MAC

43. ----m-w

264 Constants and control
for PAP, general con-
stants

512 Latest values, slow and
fast data blocks

512 Two general buffers
(available at program
start up)

1,440 Input and output buffers
for pulde data

256 Status bytes for data in
slow and fast blocks

< 3,584 Up to 14 general buffers
assigned at program start
up

TM687
2628.000

TABLE XIII Can't

TOTALS

A 16,207
B 1,165
C 7,567
D (Less ODT) 4,300
E 6,568

TOTAL --B--w-- 35,807

TM687
2628.000

* TABLE XIV MEMORY USE FOR ONLINE PROGRAM '@JJ!fE~ -- --
RUNNING WITHOUT ODT (NUMBERS REFER To ENTRIES IN TABLE XIII) - -

MEMORY WORDS USE

2655 DOS monitor (36)

1353 Monitor buffers, mostly device
drivers (37)

2345 BSX supervisor, including task
table, links to drivers, and spe-
cial drivers 6ar CRT termiznal and
Decwriter (1,13,22,24)

4121 Overlay area. Display, disk block
editing, mag tape in-ktFalizati.on,
misc. commands (OV1:17,18,19),
(OV2:20,28,31,32), (OV3:21,33)

4486

5043

591

1199

619

556

Read in, analysis, baggAng, and
real time display of pulse data
(5,11,12,38,41)

Read in, analysis and logging of
fast and slow data, including
device drivers: (2,3,7,9,10,15,
16,27,29,30,39,42)

Portion of list task in main seg-
ment, mostly to find and read in
desired data from disk. (.Hj

Control and formatting for line
alphanumeric output devices (4,
23,28)

Command input and conversion
(1,261

Clock task and clock interrupt
handler (1,251

TM687
2628.000

TABLE XIV Con'@

MEMORY WORDS

373

67

233

120

4352

559

USE

Overlay control and read in (14,351

Disk I/O control (14)

Portion of mag tape task in main
segment (6)

General buffer control (5)

17 General buffers (12,40,43)

Unused memory

28692 Total (=28K)

TM687
2628.000

FIGURE CZXPTIONS

1. Schematic d&agram of the liquid Helium flow to the superconduct-

ing magnet.

2. (a) Program steps for the read in of data during the bubble

chamber pulse. (b) The computer beam track gates near beam

time. In each case, the curve shows the pressure inside the

chamber.

3. Pressure vs. volume diagram of one bubble chamber pulse. The

area inside the curve is the work done on the chamber liquid

done by the expansion system.

4. List of the gold chrome1 thermocouples during a chamber cool-

down. Temperatures are given in degrees Kelvin. Note that

both 15 minute and 60 minute rates are given; by comparing

these two, the operator can tell whether the cooldown rate is

increasing, decreasing, or remaining constant.

5. List of data concerning bubble chamber temperatures, cooling

loops and expansion system during the heavy neon-hydrogen run.

In this case, the mean of all readings between 0200-0400 on

24 May 1976 is given. The standard deviation (sigma) of each

reading during the two hour period and the rate of change of the

means with respect to the means for the previous two hour period

are also given.

6. List of the data read into the slow data block every l/16 hour.

7. List of the data read into the fast data block every l/64 hour.

TM687
2628.000

Figure Captions
-2-

8. List of the data read every chamber pulse.

9. Copy of a page display of pulse data on the CRT terminal screen.

This page shows hadron beam timing using simulated data during

a period when the bubble chamber was not running.

10. Typical operator commands needed to make a few variable summary,

plot some of that data on the memory scope, make hard copy on

the line printer from the memory scope, and to plot data directly

on the line printer. The commands shown were actually used to

make Figures 11, 12, 14 and 16.

11. Sample of a few variable summary list. Variables shown here

are:

3-i. Hydrogen storage dewar pressure

2. Hydrogen storage dewar vent valve % open

3. Neon-hydrogen storage dewar pressure

?I. Neon-hydrogen storage dewar condenser hydrogen level

6. Neon-hydrogen storage dewar condenser supply valve % open

6. Neon-hydrogen storage dewar dondenser vent valve % open

12. Graph of variable 1, Bigure 11 vs. time. This graph was originally

plotted on the memory scope with good resolution, but details

were lost when it was hard copied on the line printer.

13. Graph of the liquid hydrogen storage dewar level vs. time for a

two day period. Points are the means of all readings during a

two hour interval and error bars are the standard deviations of

the readings during that period. The figure waszhard copied

from the memory scope to the line printer.

TM687
2628,000

Figure Captions
-3-

14. Four small graphs of variables vs. time, hard copied from the

memory scope to the line printer. Clockwise, starting from

the upper left, the variables are 1, 3, 6, 2 of Eigure 11.

15. Scatter plot of one variable vs. another hard copied from the

memory scope to the line printer. The x axis is the hydrogen

storage dewar pressure and the y axis is the vent valve which

relieves this pr.essure. The plot shows the action of the air

controller which varies the vent valve to control dewar

pressure. The data of Figures 11, 12 and 14 are included here,

but a longer time interval, covering several control cycles, was

chosen for the plot.

16. The same data as Figure 12, but plotted directly on the line

printer.

17. The same data as Figure 13, but plotted directly on the line

printer.

TM-687

TM-687

!lll!lllllllllllll~ll~~~
I ! I, I I /

i i / / /
11 I\IjI
/ 1 / I I

/ / / / 1 / ! I I I I
I i I I I I

/ j

TM-687

t*** 1.5’
AT 14: 38: 90 BC-GIPR-76

TC 15’ R E.B’ R
Iem TEM; 88.
ae1 1133.2

- -;: c ; -5.0
-3.3

182 130.s -2 .8 -3.3
183 158.7 -2 ‘3 6.2
184 *3 :&j :f.z 3
105 111.0 -1.2 -1.5
106 114.a -4.8 -4.2
107 121.4 -X ,.6 -4. G1
188 83.5 -4.8. -5.1
169 -35.4 -3 .6 -4.3
118 186.4 -3.6 -3.3
111 113%;. 5 -4. El -4. 1
::3 2 118.5 *gl -3.2 :+: pJ -3.8 *8

114 lE16.1 -4. G3 -4. 1
115 117.u -3.2 -3.7
116 73.5 -4.8 -4.1
117 as.5 -4.4 -4.3

EUEBLE CHkMBEE :*:y:*:+z**
VALUES

1:: 81.3 TEMP 15’ -6. F! R 60 -5. R (3
126 :+: FJ :)r 3 :* 0
121 83.6 -4.8 -3.9
122 88 .7 -4.8 “.9
123 88. 6 -4. B 2,
1 24 83. $3 -4.8 -5.8
125 *$I :*B :w @
126 :3 n - :f: Fj :* B
1 3 L-l 7 215.3 -8.8 -1 . 5
1. 28 55.5 -1.2 -IT 1
129 23.8 q 8

-5:g
-4: 1

1.36 186.9 -4.8
131 1GG;. 3 -4.a -4.2
132 *!2 :.g @ *El
133 z+z FJ ;c:g :*Ef
134 118.3 -3.6 -3.9
135 116.8 -2.8 -3. i
136 98.6 -3.6 -4. i
1.37 lB&. 1 -3.6 -3. -2 a

14: 32: 17

15’ I-? 6Q.’ R
-3.2 -.3. 7
-2, 4 -2.8
-2.4 -3.3
-3. IT

g.3
-3.6
-8.4

-5.2 -5.2
-8.4 -8.5

:I:@ * 0
-8.4 -8.3
-1.5 -2. gl
- -3 8 L. -2.8
-1.6 -2 2
-1.2 -114
-c?. 8 -1.3
-0.8 -1.1
-u. 8 -1.4
-4.8 -4.7
-6.8 -3 .I
-5.6 -2.9

TM-687

FST 02: 00: 00 24’MRY-7G tlEl?HS
CHQMBER TEflP IN f’s117

TI MEAH SIGMFi
CHAMEER CSVG, TOP 341 101.52 5.02
GELOW D. JBCKET 487 1B2. 28 0.10
2’ ABDVE EQUATOR 488 37.03 1.82
;;$E PISTQN 483 106.92 :* 0

=r I ON SEiSLS 3 18 134.43 7. 63
Z SECT. TOF, SOT 438 :* 8 :+z g!
FlVERAGE 484-483 93.62 2.54

E’XFfitG ION SYSTEM IN PSIG
PS M E A N SIGMA DR I VE, E;OUNCER 853 1114.5 7 3 . b .-

CHAMEER LOOP VALVES 2 DFEt.1
GL1EBLEc MAIN 158 2.5 4. B
PUMP, PLENUM 163 100.0 w. 0

2HR R
-0.61
-0.13
-8.38

gf. 62
-3. El

:+z 8
-0 .52

2HF: E
-5. is

-0.2
8. B

2HR R

-0. ;::
-c3.10
-8.02
-El. 03

it: c3
-3.57

2HR R
-0.3

0.0
0. B

DEVICE UNITS ME~IN s I GMA 2HR R DEVICE UNITS II E fi t-1 SIGMc?i 2HE ti
tlfi1til LOOP
PT 167 PSID 15.27 8.47 -8.05 p ‘s) 6 1 $I :: 15. Q 10. 1 -8. .3

PUMP LOOP
TIC 163 SPEC 4. lE! 8.2% -0. r32 .P’v’ iif 84.3 E. 3 -1.3
DPT 513 PSID 13.25 0.08 8.03 FI 346 1tGCt-l 8 _. 34 B. 11 0.02

FLENUM LOOP
FiT 164 PSID 22.23 8.BG -8.82 P V 164 % 4.5 3.7 El. 5

REFRIGERATICN
FI 2Q5 INCH Et.36 2.42 B. 33 FT 184 PSIG 27.81 8.37 -8.56

CHAMBER
APVQ 0 KJ 5.017 8.426 El.033 AE-P B MS 5.1 8. 1 0. 1
fiP’v’1 0 KJ 3 .a~4 .-.--a 0.163 -0.127 ADF 0 PSI 45.21 8.11 -#. 13
APW 0 %J A 185 -a. 163 fq $<I 1 8 I r’; C H 1.31 0.01 -8.01
CPX 180 FSIA

ly9.30 L. 337
-6.03 -8. @2

TM-687

M 2 I- .
-::

L”
2 Ijj
m !-I1
M f3
3J

i-4-i
I-- - “n -%- .A” ti
1-i
I I--

._ ._ .” 1-1 j a-1, ,.I .,
.“j .“., . ..“.
:I> x. :a
-I --I 4

-;

TM-687

TM-687

-13
-12
“11
if3

- 9 .s
- :j
-7
- 6
-5
-4.
- 3

-.-2.
-1.

8

TM-687

TM-687

---------.-----.--~~~~-~-,..-- - -- --
. 1.1 : :::::
................ 1.1 : 1..
. :
............. :m: : 1. : : .: : : :
.........................

..~~..:..:..:..:..:..:..:..:
. . :

.
.,., :“: :: : : : : : : : .: : : : :

: *: .: : : : :
..................

............... : ..
9:

..I 1; 1;. 1: 1: ; 1:: : :: : 1: : : : :
............ .

: P-&-i :
: : :&,y: : : ::.

....................................
;

. .C;
,.~‘.:‘:~‘,,~,~:‘.‘~‘.~;.:‘,‘,‘:!: p.,.; ,,., :‘;:“.: .,., 1, I,,:., :.:.I. 1. *.:,‘“:“.‘:,,:; 1: ., ./ , ,, . : :,s: :..: :.:
... : 1” : ... L” : 1.’ I” : ., .,, . ,.‘.’ 1” . , . .’ 1.7.4 ... 1, :, .. :,’ : : : : 1”’ . I 1. :

..........

.......... :w: : : : : : : : ;‘: : : : : : : : :: : : ;‘: : : : : : :

.......... 9:.
...

..........:

................................... . :::::,--R(.m : : :

........ :.:::::::: *: :.:::::::::::::::::::.

.

........~

..

...... :.H. .*

..

........:’ I..

...... ; ..
. . . : : : : : : : : .:::I : : : :

..~....:~:..:i:;.-:~:...:..:..:..:..:.....:..~..:..;......‘...:
: : : " . ; . ’

..... :,: : : : :,,I . .
::

,.*.’
...

;
>: : : : : : : : 1.1 . . ,,,

.......... :* :. : : : : : : : : : : : : : I . . :‘: : . . I ,
. .1.-! :. . : : : : : : : : : : : : : : : : : :
...
: :I;: : :ii: : : : : : : : : : : : : : : >::::::::::::::::::I
.................................. _
.
.:.....................................: x
.:

i&-vi::::::::::::::::::: :.: : : : : : : : : : : : : : : : :Lq: :c
... : : : : : : : :: : : : : : : : : . : . . :

.
...................................

.. .
.

....
..< ::

..~.....;
......................

. .
:. . : 2’:

.....................y+: % :ii:
:, ; : : : : : : : : : : : : : : : : : : : ; : : : : : : : : : : : : :: : :: ; .

....d ;,;‘I : : : : : : : l.1 : I,,: : : : . ;:,:
. . z % .* .

.... i i
j

. -
................................ . . . :

;
... : : :.M ... :gf : ; f :;.; ;

.... :. ...
;n:

... :.: : : : : : : :*: : .: ‘: : :’ .I : : : :. : :. r: ... _
..................... . ..‘..‘;: : . . i :

..‘..........~

........................
:.::::.

i+:.i ; ii j ii
........................ .::;. ~

: : :
........................ : : : ::.: : : : : : : :

TM-687

. s . . . *

. . .

. . .

. . .

. . .

. .
. . - .* -

.

-_ _ .

.

I.-- : .
._‘..... .;

:. ,.
4..

. .
.

: ::
.*................

‘_
.

............

............ .

. .._ :

............
:

............

............
.

............ .

............ . :

..

..........
: d

.
.

...... :,a.‘... .
.+I- . . +:

A’ :

....... :

......... _. ...

.... ... :: ..:.: .f!
b-4: _ .::.

,w: . 3
>. .

. _..
_- i-y-q’ *.:

.' . i 2” . ’
. $...&j

.

. z.1 e...‘.

4’

.

.
. . . .

. I ,

; . . ; ,$. I .

:

.
;r”..:.::: i::::::::: i

. :Q

: : : : : : : : : $.

.

b&l .

.
. <. :

Fsq . : .
. _ . . .

i
.- :

. .

.

.-

: . :
.

.

. . . . _ .

........

........

........

. :
. i

j :.
:

.

. . .
....... ‘> -

....... :-
1: :

.... .. .;.

. :
............

:
...... ..;

....
........ i

: .
.......

.............
-&

i m .. : :. .

.......
I --“i

-.;+:-: :. . ;
,: .A -:

j
..w

...

.........................
.

..... .:.i

...
.........................

. . *

. . .

. . .
-. .
. . .
. . .
. . .

. :
. :

: .
. :

.

: : .

. : . c - . . .

; .
. i . . . ; . . .

: . .
.

.
. s . . .

.

.

.

.

.

.
.
. . .
. . .
. . .
. . .
. . .

.
.

.:
.

.

.

. . . .
........
........

.,.............- ...
................
................
. ..:.
.

...............

.._

...............
:

...........

.

. ,__..

. i ._..

‘.
. _.

. . , . . .

.

. . . .
__....,.......

.
.-..........
:

.............. . .

..............

..............

